KIX1002: ENGINEERING MATHEMATICS 2 TUTORIAL 9: LAPLACE TRANSFORM 2

1. Evaluate the given Laplace transform.

i)
$$\mathcal{L}\{t \sinh 3t\}$$

iii)
$$\mathcal{L}\{e^{2t} * \sin t\}$$

$$\mathcal{L}\left\{\int_0^t \tau \sin \tau \, d\tau\right\}$$

ii)
$$\mathcal{L}\{te^{-3t}\cos 3t\}$$

iv)
$$\mathcal{L}\left\{e^{-t} * e^{t} \cos t\right\}$$

$$\begin{array}{ll} \text{ii)} & \mathcal{L}\{te^{-3t}\cos3t\} \\ \text{iv)} & \mathcal{L}\{e^{-t}*e^t\cos t\} \\ \text{vi)} & \mathcal{L}\left\{t\int_0^t\sin\tau\,d\tau\right\} \end{array}$$

2. Use the Laplace transform to solve the initial-value problem.

i)
$$\frac{dy}{dt} + 3y = 13\sin 2t$$
, $y(0) = 6$

ii)
$$y'' + 16y = f(t)$$
, $y(0) = 0$, $y'(0) = 1$ where

$$f(t) = \begin{cases} \cos 4t, & 0 \le t \le \pi \\ 0, & t \ge \pi \end{cases}$$

iii)
$$y' + y = \delta(t - 1), y(0) = 2$$

iv)
$$y'' - 7y' + 6y = e^t + \delta(t-2) + \delta(t-4)$$
, $y(0) = 0$, $y'(0) = 0$

V)
$$y'' + y = \delta\left(t - \frac{1}{2}\pi\right) + \delta\left(t - \frac{3}{2}\pi\right), \quad y(0) = 0, \quad y'(0) = 0$$

3. Use the Laplace transform to solve the given system of differential equations.

i)
$$\frac{d\dot{x}}{dt} = -x + y , \frac{dy}{dt} = 2x$$

$$x(0) = 0$$
, $y(0) = 1$

ii)
$$\frac{dx}{dt} + 3x + \frac{dy}{dt} = 1, \quad \frac{dx}{dt} - x + \frac{dy}{dt} - y = e^t$$

$$x(0) = 0, \ y(0) = 0$$

iii)
$$\frac{dx}{dt} - 4x + \frac{d^3y}{dt^3} = 6\sin t , \frac{dx}{dt} + 2x - 2\frac{d^3y}{dt^3} = 0$$

$$x(0) = 0$$
, $y(0) = 0$

$$y'(0) = 0, \ y''(0) = 0$$

4. Two masses m_1 and m_2 are connected to three springs of negligible mass having spring constants k_1 , k_2 and k_3 , respectively.

Let x_1 and x_2 represent displacements of masses m_1 and m_2 from their equilibrium positions. The motion of the coupled system is represented by the system of second-order differential equations:

$$m_1 \frac{d^2 x_1}{dt^2} = -k_1 x_1 + k_2 (x_2 - x_1)$$

$$m_2 \frac{d^2 x_2}{dt^2} = -k_2 (x_2 - x_1) - k_3 x_2$$

Using Laplace transform to solve the system when $k_1 = 1$, $k_2 = 1$, $k_3 = 1$, $m_1 = 1$, $m_2 = 1$ and $x_1(0) = 0$, $x_1'(0) = -1$, $x_2(0) = 0$, $x_2'(0) = 1$.

5. The system of differential equations for the charge on the capacitor q(t) and the current $i_3(t)$ in the electrical network shown below is

 $L\frac{di_3}{dt} + R_2i_3 - \frac{1}{c}q = 0$ Find the charge on the capacitor q(t) using Laplace transform when L = 1H, $R_1 = 1\Omega$, $R_2 = 1\Omega$, C = 1F, $E(t) = \begin{cases} 0, & 0 < t < 1 \\ 50e^{-t}, & t \ge 1 \end{cases}$, $i_3(0) = 0$, q(0) = 0.