APPENDIX 12.1 SOLVE THE PDE LIKE ODE — EXTRA INFO

We can solve the PDE like the ODE when there is only one-independent-variable derivative in the
equation. For example:

62
m{u(x, )} —ulx,t)=0
%{u(x, )} —ulx,t)=0

aa—,:z{u(x. 0} + :—x{u(x, )} —u(x,t) =0

There are similarity and differences between the ODE and PDE. For example:

Case #1: 2 Distinct Real Roots (Let dependent variable = u ; independent variables = x,t )

Solution for linear homogeneous ODE Solution for linear homogeneous PDE

d2

L u®—u@® =0

2
Solve Solve %{u(x, )} —u(x,t)=0

Letu(t) =e™ Letu(x,t) = et

r2et — ott — r2e™t — ot —
F?-—1e" =0

The solution e”® # 0

r?—1e" =0
The solution e™ # 0
Hence, Characteristic equation: (r> —1) = 0 Hence, Characteristic equation: (r? — 1) = 0
r2=1 r2=1
r=+41 r=4=41
We have 2 independent solutions, i.e. et, et We have 2 independent solutions, i.e. et, et
Using linear superposition: Using linear superposition:
su(t) =ciet + et sulx,t) =ci(x)e t+ oy (x)et
Boundary conditions: u(0) = 1,u(1) = 0 Boundary conditions: u(x,0) = x, u(x,1) = 0
su(t) = 1.157e7t — 0.157et

su(x, t) = (1.157x)e t — (0.157x)et
Note: ODE has arbitrary constant (e.g. ¢;) while PDE has arbitrary function (e.g. c;(x))




Case #2: 2 Distinct Complex Roots (Let dependent variable = u ; independent variables = x, t )

Solution for linear homogeneous ODE

Solution for linear homogeneous PDE

Solve = {u(t)} +u(t) = 0

dc?
Letu(t) =e™

Hence, Characteristic equation: (r? + 1) = 0

r=1V1= i
We have 2 independent solutions, i.e. eit, e i
Using linear superposition:
~u(t) =ce 4 et

= A;cost + A,sint

2
Solve %{u(x, O} +ulx,t)=0

Letu(x,t) = et

Hence, Characteristic equation: (r? + 1) = 0

r=4Vl=+i
We have 2 independent solutions, i.e. i, e i
Using linear superposition:

sux,t) = ¢ (x)e™ + ¢, (x)ett

= A;(x)cost + A, (x)sint

Note: ODE has arbitrary constant (e.g. ¢;) while PDE has arbitrary function (e.g. ¢; (x))

Case #3: 2 Identical Roots (Let dependent variable = u ; independent variables = x, t )

Solution for linear homogeneous ODE

Solution for linear homogeneous PDE

Solve ‘;d—;{u(t)} + 2%{11(1:)} +u(t)=0

Letu(t) =e™
Characteristic equation: (r2 +2r+1) =0
r+1D)(r+1)=0
r=-1

t ,—t

We have 2 dependent solutions, i.e.e™ ", e

Treatment: Multiply its independent variable

New solutions: et te™t

Using linear superposition:

su(t) = et + cytet

62
Solve —
at2

0

fu(x,t)} + 2 %{u(x, O} +ulx,t) =

Letu(x,t) = et
Characteristic equation: (r2 + 2r +1) = 0
r+DH)r+1)=0
r=-1

t ,—t

We have 2 dependent solutions, i.e.e™ %, e

Treatment: Multiply its independent variable

t -t

New solutions: e™*, te
Using linear superposition:

su(x,t) =c (et + ey (x)tet

Note: ODE has arbitrary constant (e.g. ¢;) while PDE has arbitrary function (e.g. ¢; (x))




More examples:
Solve u,, —u = 0, whereu = u(x,y)

Solution:

Sinceu = u(x,y)
Dependent variable: u
Independent variable: x, y

One-independent-variable derivative, i.e. x —derivative, where x as the variable while y as the
constant, thus we can solve the PDE like ODE.

62
Uyx = m{u(x' n}
62
uxx —u= ﬁ{u(x'}’)} - u(x;Y) = 0

Similar to ODE, u"’ (x) — u(x) = 0 where u(x) = e™*

Characteristic equation, r2—1=0

2realroots:ry =1,1r, = —1

Solution of PDE: u(x,y) = ¢;(y)e* + c,(y)e™ , where ¢, (), c,(y)= arbitrary functions

Solve uy, —u =0, whereu = u(x,y)

Solution:

Since u = u(x,y)
Dependent variable: u
Independent variable: x, y

One-independent-variable derivative, i.e. y —derivative, where y as the variable while x as the
constant, thus we can solve the PDE like ODE.

62
Uyx = ﬁ{u(x' n}
62
ey — 1 = 2 fu(x, )} — ulx,y) = 0

Similar to ODE, u"'(y) — u(y) = 0, whereu(y) = e™

Characteristic equation, 72 —1 =0

2realroots:ry = 1,1, = -1

Solution of PDE: u(x,y) = c;(x)e* + c,(x)e™ , where c¢; (x), ¢, (x)= arbitrary functions

Note that this approach can’t solve the PDE problems if there are two-independent-variable derivative.

For example:

a2 d
30y {u(x, )} + a{u(x, )} —u(x,t)=0

a2 a
ﬁ{u(x, )} + @{u(x, O} —ulx,t)y=0



APPENDIX 12.2 SOLVE THE PDE BY DIRECT INTEGRATION— EXTRA INFO

We can solve the PDE by direct integration when there is only one derivative component in the

equation. For example:

0? _ —10t
o {fu(x,t)} = 5xe

9 _ —10t
Py {fu(x,t)} = 5xe

62

— -10t
pFre {fu(x,t)} = 5xe

e Using Direct integration on ODE vs PDE

Integration in ODE (Arbitrary Constants)

Integration in PDE (Arbitrary Functions)

d2
Solve E{u(t)} =0
Integrate both sides,

f;—:z{u(t)}dt = [ 0dt

d
E{u(t)} =0t+c
Integrate both sides again,
d —
Ju®}dt = [ cydt

~u(t) =cit+c,

Where c¢; and ¢, are 2 arbitrary constants.
These constants can be solved if 2 initial
conditions or boundary conditions are
provided.

Note: n'" order ODE will have n constants to
be solved. (e.g. 2" order ODE have 2 arbitrary
constants)

aZ
Solve F{u(x, )} =0
Integrate both sides,

J :—;{u(x, t)}dt = [ 0dt

0
—{ulx, )} =0t + ¢, (x)
dt
Integrate both sides again,
a
fa{u(x, t)}dt = [ ¢, (x)dt

sulx, t) = cq ()t + cp(x)

Where c; (x)and c,(x)are 2 arbitrary functions
of variable x. These functions can be solved if
the initial conditions or boundary conditions
are provided.

Note:n™ order PDE may need more than n
arbitrary functions to be solved

e More examples:

a2 _
Solve m{u(x, Y)}=0

Solution for linear homogeneous PDE

Integrate both sides with respect to variable x,
a2 _

faxay {u(x,y)}dx = [ 0dx

a

- {u(x )} = 0x +¢,(7)




Integrate both sides with respect to variable y,
3
J 55 @l yidy = [ ei(y)dy

su(x,y) = [ c;(y)dy
where c; () is the arbitrary function of variable y.

2
Solve u,, = 6xe~t whereu,, = %{u(x, )} ; BC:u(0,t) = tandu,(0,t) = et

Solution:

* Dependent variable: u
* Independent variable: x, t

2
Uy = ﬁ{u(x, t)} = 6xe”t

_ 92 . . .
Note: One derivative component py and thus we can use direct integration

* Integrate the PDE with respect to variable x (Hence, variable t is constant)

62
ﬁ{u(x,t)}dx=j6xe‘tdx

0 . _ X
—{u(x, t)} = 6e xdx = 6e " —+c(t)
dx —— 2

treated as constant
when we integrated
wrt the variable x

* Integrate the PDE with respect to variable x (Hence, variable t is constant)
f%{u(x, t)}dx = f 3e7tx% + ¢y (t) dx
General PDE solution: u(x,t) = e ‘x3 + xcy(t) + ¢, (1) ,
where the unknown arbitrary functions are ¢ (t) & ¢, (t).
Next, we continue to apply the boundary condition to solve the particular PDE solution.
u(0,t) =t

Forx =0: u(x,t) = e t(0) + (0)c; (t) + c,(t) =t
se(t)=t

d
U, (x,t) = a[e‘tx3 + xcq(t) + c,(t)] = 3e7x? + ¢4 (t)

u, (0,t) = et
Forx = 0: u,(x,t) =3e7t(0) + ¢, (t) = et
ro()=e™

Particular PDE solution: u(x,t) = e tx3+xe t+t




Solve uy, = sinxcosy where the boundary conditions are given:

When y =§, Uy = 2%

When x =, u = 2siny

Solution:
* Dependent variable: u
* Independent variable: x & y

62
Uxy ~ oxdy

{u(x,y)} = sinxcosy
2

- a
Note: One derivative component
dxdy

and thus we can use direct integration

* Integrate the PDE with respect to variable y (Hence, variable x is constant)

92 ,
faxay {u(x,y)}dy = [ sinxcosydy

aa—x{u(x, y)} = sinx [ cosydy = sinxsiny + ¢, (x)

* Integrate the PDE with respect to variable x (Hence, variable y is constant)
faa—x{u(x, y)}dx = [ sinxsiny + ¢, (x)dx

General PDE solution: u(x,y) = —cosxsiny + [ ¢;(x)dx + ¢, (v)
where the unknown arbitrary functions are ¢, (x) & ¢, (¥).
Next, we continue to apply the boundary condition to solve the particular PDE solution.

u(m,y) = 2siny
Forx = m: u(x,y) = —cosnsiny + [ ¢;(x)dx + c,(y) = 2siny
Jci(®)dx + ¢, (y) = siny
~cy(y) =siny — [¢;(x)dx  (Note: ¢, (y) has unknown ¢, (x) to be solved)

d

u,(x,y) = p [—cosxsiny + [ ¢;(x)dx + ¢,(y)] = sinxsiny + ¢;(x)

(D)=
Fory = =: u,(x,y) = sinxsin + ¢;(x) = 2x

s cp(x) = 2x — sinx

Note: ¢; (x) is expressed in the variable x only
Substitute ¢, (x) into ¢, (y) equation where u(rm,y) = 2siny

c,(y) = siny — [ 2x — sinxdx
= siny — (x? + cosx)
= siny — (m? + cosm)
= siny + 1 — 2
Note: c,(y) is expressed in the variable y only

Particular PDE solution: u(x,y) = —cosxsiny + [ 2x — sinxdx + siny + 1 — n?
= —cosxsiny + x? + cosx + siny + 1 — 2




APPENDIX 12.3 SOLVE THE PDE BY REDUCTION OF ORDER METHOD— EXTRA INFO

We can solve the PDE by reduction of order method when the order can be reduced by proper
substitution.

a 2 ( 4 ) a ( ) )

Order can be reduced by let p(x,t) = ;—x{u(x, t)}
9 {(p(x, )} +p(x,t) =0
- —
(0} +p(x0)

2

0
gy (O} + o (uGe )} =0

Order can be reduced by let g(x,y) = _aax {ulx, )}
9 { T+ 0
- —
3y gxy}+gxy)

Hence, we can solve the problem by using the integration, solve PDE like ode approach, etc.

For example, repeating the problem in Appendix 12.2:

2
Solve u,, = 6xe~t where u,, = %{u(x, t)} ; BC:u(0,t) =tandu,(0,t) = et

Order can be reduced by let p(x, t) = :—x{u(x, t)}

e = o u(x, 00} = 6xe™ = 2 {p(x, 1))

* Integrate the PDE with respect to variable x (Hence, variable t is constant)
[ 2 tpx,t)}dx = [ 6xe~tdx

p(x,t) = 6et [ xdx = 6e‘t%2 + ¢, (0)

* Back substitution the p(x,t) = % {u(x, t)}. Hence, Integrate the PDE with respect to variable x
(Note: variable t is constant in this case)

f;—x{u(x, t)}dx = [3e tx? + ¢, (t) dx
sulct)=e tx3 + xci (b)) + ¢ (t)




