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APPENDIX 3.1 CONVERSION BETWEEN EXPONENTIAL & TRIGONOMETRIC FUNCTIONS  

Complete solution:  

>> 𝑦(𝑥) = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥      

where  𝑚1  ≠  𝑚2    ; 

               𝑚1 = 𝑚 + 𝑖𝛽  & 𝑚2 = 𝑚 − 𝑖𝛽; 

               𝑖 = √−1 = 𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 

or  

>> 𝑦(𝑥) = 𝑒𝑚𝑥(𝐴𝑐𝑜𝑠𝛽𝑥 + 𝐵𝑠𝑖𝑛𝛽𝑥)        

where 𝐴 = 𝑐1 + 𝑐2; 

              𝐵 = 𝑖(𝑐1 − 𝑐2) 

 

Note: In this case, the complete solution can be either 𝑦(𝑥) = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥  and 𝑦(𝑥) =

𝑒𝑚𝑥(𝐴𝑐𝑜𝑠𝛽𝑥 + 𝐵𝑠𝑖𝑛𝛽𝑥). Both are the same equation but in different format.  

 

See the proof below. 

𝑦(𝑥) = 𝑐1𝑒𝑚1𝑥 + 𝑐2𝑒𝑚2𝑥 

>> 𝑦(𝑥) = 𝑐1𝑒(𝑚+𝑖𝛽)𝑥 + 𝑐2𝑒(𝑚−𝑖𝛽)𝑥 

                 = 𝑐1𝑒(𝑚)𝑥𝑒(𝑖𝛽)𝑥 + 𝑐2𝑒(𝑚)𝑥𝑒(−𝑖𝛽)𝑥   

                 = 𝑒𝑚𝑥 ( 𝑐1𝑒(𝑖𝛽)𝑥 + 𝑐2𝑒(−𝑖𝛽)𝑥)   

 

Given Euler formula: 𝑒𝑖𝑥 = 𝑐𝑜𝑠𝑥 + 𝑖𝑠𝑖𝑛𝑥 ;  𝑒−𝑖𝑥 = 𝑐𝑜𝑠𝑥 − 𝑖(𝑠𝑖𝑛𝑥) 

>> 𝑦(𝑥) = 𝑒𝑚𝑥 ( 𝑐1(𝑐𝑜𝑠𝛽𝑥 + 𝑖(𝑠𝑖𝑛𝛽𝑥)) + 𝑐2(𝑐𝑜𝑠𝛽𝑥 − 𝑖(𝑠𝑖𝑛𝛽𝑥)))   

                 = 𝑒𝑚𝑥 (𝑐𝑜𝑠𝛽𝑥( 𝑐1 +  𝑐2) + 𝑖(𝑠𝑖𝑛𝛽𝑥)( 𝑐1 − 𝑐2))   

                 = 𝑒𝑚𝑥 (𝐴𝑐𝑜𝑠𝛽𝑥 + 𝐵𝑠𝑖𝑛𝛽𝑥)                                           [proven] 

Thus, exponential function,  𝑐1𝑒(𝑖𝛽)𝑥 + 𝑐2𝑒(−𝑖𝛽)𝑥  can be converted to trigonometric function,      

𝐴𝑐𝑜𝑠𝛽𝑥 + 𝐵𝑠𝑖𝑛𝛽𝑥 using the Euler formula. Example:  𝑐1𝑒𝑖(5𝑥) + 𝑐2𝑒−𝑖(5𝑥) = 𝐴𝑐𝑜𝑠5𝑥 + 𝐵𝑠𝑖𝑛5𝑥  



2 
 

APPENDIX 3.2 HOMOGENEOUS LINEAR DIFFERENTIAL EQUATION WITH NON-

CONSTANT COEFFICIENTS 𝑥2, 𝑎𝑥  (KNOWN AS EULER-CAUCHY DIFFERENTIAL 

EQUATION) 

In section 3.3, we discussed homogeneous linear differential equation with constant coefficient, i.e. 

𝑎
𝑑2𝑦

𝑑𝑥2 + 𝑏
𝑑𝑦

𝑑𝑥
+ 𝑐𝑦 = 0  and let the solution to be 𝑦(𝑥) = 𝑒𝑚𝑥 𝑜𝑟 𝑦(𝑥) = 𝑥𝑒𝑚𝑥 depending on the roots 

of characteristic equation.  

However this methods is not applicable to solve the Euler-Cauchy differential equation, i.e. 

𝑥2 𝑑2𝑦

𝑑𝑥2 + 𝑎𝑥
𝑑𝑦

𝑑𝑥
+ 𝑏𝑦 = 0, where the coefficients are not constant. The strategy to solve this type of 

differential equation is to convert the non-constant coefficient into constant form. This can be 

achieved by substitution (let 𝑥 = 𝑒𝑡). 

Two important properties used to convert non-constant coefficient to constant coefficient: 

(i) 𝑥2 𝑑2𝑦

𝑑𝑥2 =
𝑑2𝑦

𝑑𝑡2 −
𝑑𝑦

𝑑𝑡
    

(ii) 𝑥
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑡
 

 

The detail description and proof is provided in the table below. 

(i) Convert non-constant coefficient (𝒙
𝒅𝒚

𝒅𝒙
) to constant coefficient (

𝒅𝒚

𝒅𝒕
) 

𝑥 = 𝑒𝑡 

>> 𝑙𝑛|𝑥| = 𝑡 

>> 
1

𝑥
=

𝑑𝑡

𝑑𝑥
 

>> 
1

𝑥
=

𝑑𝑡

𝑑𝑥
 

 

Using chain rule,  
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑡

𝑑𝑡

𝑑𝑥
 

>> 
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑡
(

1

𝑥
) 

>> 𝑥
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑡
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(ii) Convert non-constant coefficient (𝒙𝟐 𝒅𝟐𝒚

𝒅𝒙𝟐) to constant coefficient (
𝒅𝟐𝒚

𝒅𝒕𝟐 −
𝒅𝒚

𝒅𝒕
) 

 𝑥
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑡
 

>> 
𝑑

𝑑𝑥
(𝑥

𝑑𝑦

𝑑𝑥
) =

𝑑

𝑑𝑥
(

𝑑𝑦

𝑑𝑡
) 

>> 𝑥
𝑑2𝑦

𝑑𝑥2 +
𝑑𝑦

𝑑𝑥
=

𝑑

𝑑𝑥
(

𝑑𝑦

𝑑𝑡
) 

 

Using chain rule, 
𝑑

𝑑𝑥
(

𝑑𝑦

𝑑𝑡
) =

𝑑

𝑑𝑡
(

𝑑𝑦

𝑑𝑡
) (

𝑑𝑡

𝑑𝑥
)   where 

1

𝑥
=

𝑑𝑡

𝑑𝑥
 

>> 
𝑑

𝑑𝑥
(

𝑑𝑦

𝑑𝑡
) = (

𝑑2𝑦

𝑑𝑡2) (
1

𝑥
) 

Combining the equations, we get 𝑥
𝑑2𝑦

𝑑𝑥2 +
𝑑𝑦

𝑑𝑥
= (

𝑑2𝑦

𝑑𝑡2) (
1

𝑥
) 

>> 𝑥2 𝑑2𝑦

𝑑𝑥2 + 𝑥
𝑑𝑦

𝑑𝑥
=

𝑑2𝑦

𝑑𝑡2    where 𝑥
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑡
 

>> 𝑥2 𝑑2𝑦

𝑑𝑥2 =
𝑑2𝑦

𝑑𝑡2 −
𝑑𝑦

𝑑𝑡
    

 

For example: Solve 2𝑥2 𝑑2𝑦

𝑑𝑥2 − 3𝑥
𝑑𝑦

𝑑𝑥
− 3𝑦 = 0.  

Solution: Let 𝑥 = 𝑒𝑡 , then  we get  

(i) 𝑥2 𝑑2𝑦

𝑑𝑥2 =
𝑑2𝑦

𝑑𝑡2 −
𝑑𝑦

𝑑𝑡
    

(ii) 𝑥
𝑑𝑦

𝑑𝑥
=

𝑑𝑦

𝑑𝑡
 

 

2𝑥2 𝑑2𝑦

𝑑𝑥2 − 3𝑥
𝑑𝑦

𝑑𝑥
− 3𝑦 = 0                   [Euler-Cauchy differential equation, 𝑥2 𝑑2𝑦

𝑑𝑥2 + 𝑎𝑥
𝑑𝑦

𝑑𝑥
+ 𝑏𝑦 = 0] 

>>  2 (
𝑑2𝑦

𝑑𝑡2 −
𝑑𝑦

𝑑𝑡
) − 3 (

𝑑𝑦

𝑑𝑡
) − 3𝑦 = 0  

>> 2 (
𝑑2𝑦

𝑑𝑡2) − 5 (
𝑑𝑦

𝑑𝑡
) − 3𝑦 = 0           [2nd order linear homogeneous DE with Constant coefficient] 

>> 2(𝑚2) − 5(𝑚) − 3 = 0                  [Characteristic equation] 

where 

𝑏2 − 4𝑎𝑐 = (−5)2 − 4(2)(−3) = 49 > 0, thus it is Case (a) 𝑚1  ≠  𝑚2 

>> (2𝑚 + 1)(𝑚 − 3) = 0 
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>>𝑚1 = −0.5, 𝑚2 = 3                          [Real and distinct roots case] 

The complete solution: 𝑦(𝑡) = 𝑐1𝑒𝑚1𝑡 + 𝑐2𝑒𝑚2𝑡   

>> 𝑦(𝑡) = 𝑐1𝑒−0.5𝑡 + 𝑐2𝑒3𝑡 

Back substitution, we get the complementary solution to the 2𝑥2 𝑑2𝑦

𝑑𝑥2 − 3𝑥
𝑑𝑦

𝑑𝑥
− 3𝑦 = 0. 

>> 𝑥 = 𝑒𝑡 

>> 𝑦(𝑥) = 𝑐1𝑥−0.5 + 𝑐2𝑥3 where 𝑐1 & 𝑐2 = 𝑎𝑟𝑏𝑖𝑡𝑟𝑎𝑟𝑦 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑠. 
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Area, A 

h 

q = kh 

APPENDIX 5.1 MATHEMATIC MODELLING OF A LIQUID SYSTEM  (1S T  ORDER ODE)  

Figure A5.1 shows a tank of liquid. The tank has a constant cross-sectional area A. The liquid can flow 

out of the tank through a valve near the base. As it does, the height or head, h, of liquid in the tank will 

reduce. Let q be the rate at which liquid flows out of the tank. Under certain conditions the rate outflow 

is proportional to the head, so that q = kh where k is a constant of proportionality. Situation like this 

arises frequently in chemical engineering industry.  

 

 

 

 

 

  

Figure A5.1.  Modelling a liquid system 

 

Mathematic modelling of the liquid system above is illustrated below: 

The expression for the volume V of liquid in the tank at any time. 

𝑉 = 𝐴 × ℎ 

 

The volume of liquid in the tank changes because liquid is flowing out.  

Based on the law of conservation of mass: 

The rate at which this volume changes = rate of flow in – rate of flow out 

𝑑𝑉

𝑑𝑡
= 0 − 𝑞 = −𝑞 

Note: Rate of flow in is zero because there is no flow into the tank. 

Since 𝑉 = 𝐴ℎ where A is constant, so the rate of change of volume can be further reduced to 

𝑑𝑉

𝑑𝑡
=

𝑑(𝐴ℎ)

𝑑𝑡
= 𝐴

𝑑ℎ

𝑑𝑡
= −𝑞 

 

Also, 𝑞 = 𝑘ℎ, where 𝑘=  arbitrary constant, so 

𝐴
𝑑ℎ

𝑑𝑡
= −𝑘ℎ                    or                    𝐴ℎ′ + 𝑘ℎ = 0 

This is a first order differential equation with dependent variable h and independent variable t. It is 

linear and has constant coefficients. The unknown function to seek (the solution) is h(t). Engineer will 

always solve the equation to find the head, h, at any time, t for designing a liquid system. 
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APPENDIX 5.2 MATHEMATIC MODELLING OF AN RLC ELECTRICAL CIRCUIT (2N D  ORDER 

ODE)  

Figure A5.2 shows an RLC circuit. This is a circuit comprising an inductor of inductance L, a capacitor of 

capacitance C, and a resistor of resistance R placed in series. 

 

Figure A5.2.  Modelling an RLC circuit 

 

When a constant voltage source, V, is applied, it can be shown that the charge, Q(t), and the current , 

i(t) which is the rate of change of Q(t) with respect to t, satisfy the differential equation 

𝐿
𝑑2𝑄

𝑑𝑡2
+ 𝑅

𝑑𝑄

𝑑𝑡
+

1

𝐶
𝑄 = 0 

or 

𝐿 𝑄′′ + 𝑅 𝑄′ +
1

𝐶
𝑄 = 0 

 

This equation can be derived using Kirchhoff’s voltage law, the individual laws for each component. 

Because L, R, and C are constants, this is a constant coefficient equation. It is linear and second order.  

 

Notice that the RHS of the equation is zero indicates that the electromotive force excitation is zero. 

You may wonder how current flows by zero electromotive force. In fact, the current flow due to the 

initial condition. The unknown function to seek (the solution) is Q(t). Engineer will solve the equation to 

find the charge in the circuit, Q, at any time, t under initial condition, then find the current from the 

charge solution by the following relationship: 𝐼 =
𝑑𝑄

𝑑𝑡
, and design the circuit accordingly by adjusting the 

appropriate L, R & C. In this case, the complementary solution will be in transient form. 
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APPENDIX 5.3 MATHEMATIC MODELLING OF AN RLC ELECTRICAL CIRCUIT UNDER 

ELECTROMOTIVE FORCE EXCITATION (2N D  ORDER ODE)  

Analyze the electric circuit shown in Figure A5.3a. It contains an electromotive force E (supplied by a 

battery or generator), a resistor R, an inductor L, and a capacitor C, in series. 

 

 

 

 

  

Figure A5.3a.  Modelling of electric circuits 

 

If the charge on the capacitor at time t is Q = Q(t), then the current, I, is the rate of change of Q with 

respect to t,  

𝐼 =
𝑑𝑄

𝑑𝑡
 

It is known from physics that the voltage drops across the resistor, inductor, and capacitor are 

𝑅𝐼                    𝐿
𝑑𝐼

𝑑𝑡
                     

𝑄

𝐶
 

respectively.  

 

Kirchhoff’s voltage law says that the sum of these voltage drops is equal to the supplied voltage 

𝐿
𝑑𝐼

𝑑𝑡
+ 𝑅𝐼 +

𝑄

𝐶
= 𝐸(𝑡)                                                                           

Since 𝐼 =
𝑑𝑄

𝑑𝑡
,  

𝐿
𝑑2𝑄

𝑑𝑡2
+ 𝑅

𝑑𝑄

𝑑𝑡
+

1

𝐶
𝑄 = 𝐸(𝑡)                                                                  

which is a second order linear differential equation with constants coefficients. 

 

Notice that the RHS of the equation is 𝐸(𝑡) indicates that the electromotive force excitation is non-zero. 

Thus, the electromotive force causes current to flow in the circuit. The unknown function to seek (the 

solution) is Q(t). Engineer will solve the equation to find the charge in the circuit, i, at any time, t under 

the electromotive force. In this case, the particular solution will be in steady state form in most of the 

time depending the type of electromotive force. Note that the current can be obtained from the charge 

solution by the following relationship: 𝐼 =
𝑑𝑄

𝑑𝑡
. 
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If the charge Q0 and the current I0 are known at time 0, then the initial conditions are 

𝑄(0) = 𝑄0                                     𝑄′ = 𝐼(0) = 𝐼0  

The total solution will be the combination of the particular solution due to the electromotive force and 

the complementary solution due to the initial condition. 

 

Example 

Find the charge and current at time t in the circuit of Figure A12.6a if R = 40 , L = 1 H, C = 16 × 10-4 F,         

E(t) = 100 cos 10t, and the initial charge and current are both 0. 

 

Solution 

With the given values of L, R, C, and E(t), we obtain 

𝑑2𝑄

𝑑𝑡2
+ 40

𝑑𝑄

𝑑𝑡
+ 625𝑄 = 100 cos 10𝑡        , 𝐼(0) = 𝑄(0) = 0                                                        

The characteristic/ auxiliary equation is 𝑟2 + 40𝑟 + 625 = 0 with roots 

𝑟 =
−40 ± √−900

2
=  −20 ± 15𝑖 

The solution of the complementary equation is 

𝑄𝑐(𝑡) = 𝑒−20𝑡(𝑐1𝑒15𝑖𝑡 + 𝑐2𝑒−15𝑖𝑡) 

or 

𝑄𝑐(𝑡) = 𝑒−20𝑡(𝑐1 cos 15𝑡 + 𝑐2 sin 15𝑡) 

 

For the method of undetermined coefficients, the particular solution is  

𝑄𝑝(𝑡) = 𝐴 cos 10𝑡 + 𝐵 sin 10𝑡 

Note: No treatment is needed as the exponential coefficient is different with the characteristic roots. 

Then 

𝑄𝑝
′ (𝑡) = −10𝐴 sin 10𝑡 + 10𝐵 cos 10𝑡 

𝑄𝑝
′′(𝑡) = −100𝐴 cos 10𝑡 − 100𝐵 sin 10𝑡 
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Substituting into Equation  

(525𝐴 + 400𝐵) cos 10𝑡  + (−400𝐴 + 525𝐵) sin 10𝑡 = 100 cos 10𝑡 

 

Equating coefficients, 

525𝐴 + 400𝐵 = 100                          − 400𝐴 + 525𝐵 = 0 

or 

21𝐴 + 16𝐵 = 4                          − 16𝐴 + 21𝐵 = 0 

The solution is 

𝐴 =
84

697
                            𝐵 =

64

697
 

and the particular solution is 

𝑄𝑝(𝑡) =
1

697
(84 cos 10𝑡 + 64 sin 10𝑡) 

 

The general solution is 

𝑄(𝑡) = 𝑄𝑐(𝑡) + 𝑄𝑝(𝑡) = 𝑒−20𝑡(𝑐1 cos 15𝑡 + 𝑐2 sin 15𝑡) +
4

697
(21 cos 10𝑡 + 16 sin 10𝑡) 

 

Imposing the initial condition Q(0) = 0 

𝑄(0) = 𝑐1 +
84

697
= 0                              or                          𝑐1 = −

84

697
 

 

To impose the other initial condition, first differentiate to find the current 

𝐼 =
𝑑𝑄

𝑑𝑡
= 𝑒−20𝑡[(−20𝑐1 + 15𝑐2) cos 15𝑡 + (−15𝑐1 − 20𝑐2) sin 15𝑡] +

40

697
(−21 sin 10𝑡 + 16 cos 10𝑡) 

𝐼(0) = −20𝑐1 + 15𝑐2 +
640

697
= 0                          or                                 𝑐2 = −

464

2091
 

Thus, the formula for charge is 

𝑄(𝑡) =
4

697
[
𝑒−20𝑡

3
(−63 cos 15𝑡 − 116 sin 15𝑡) + (21 cos 10𝑡 + 16 sin 10𝑡)] 
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and the expression for the current is 

𝐼(𝑡) =
1

2091
[𝑒−20𝑡(−1920 cos 15𝑡 + 13.060 sin 15𝑡) + 120(−21 sin 10𝑡 + 16 cos 10𝑡)] 

 

Note 1: 

The solution for Q(t) consists of two parts. Since 𝑒−20𝑡 → 0 as 𝑡 → ∞ and both cos 15t and sin 15t are 

bounded functions 

𝑄𝑐(𝑡) =
4

2091
𝑒−20𝑡(−63 cos 15𝑡 − 116 sin 15𝑡) → 0     as   𝑡 → ∞ 

So, for large values of t, the total solution is approximate to the particular solution 

𝑄(𝑡) ≈ 𝑄𝑝(𝑡) =
4

697
(21 cos 10𝑡 + 16 sin 10𝑡) 

and, for this reason, Qp(t) is called the steady-state solution. Figure A5.3b shows how the graph of the 

steady state behavior of particular solution, Qp compares with total solution, Q. 

 

 

 

 

Figure A5.3b. Graphs of Q(t) and Qp(t) 
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APPENDIX 5.4 MATHEMATIC MODELLING OF A VIBRATING SPRING WITHOUT 

DAMPING (2N D  ORDER ODE)  

Consider the motion of an object with mass m at the end of the spring that is either vertical or 

horizontal on a level surface as shown in Figure A5.4.  

 

 

 

 

 

 

 

Figure A5.4.  Modelling of vibrating spring (a) vertical (b) horizontal 

 

Using Hooke’s Law, which says that if the spring is stretched (or compressed) x units from its natural 

length, then it exerts a force that is proportional to x 

restoring force = −𝑘𝑥 

where k is a positive constant (called the spring constant).  

 

If any external resisting forces (due to air resistance or friction) are ignored, then by Newton’s Second 

Law, F = ma,  

𝑚
𝑑2𝑥

𝑑𝑡2
= −𝑘𝑥 

or 

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝑘𝑥 = 0                                                                               

This is a second order linear differential equation. 

 

Solution: 

The characteristic/auxiliary equation is  

𝑚𝑟2 + 𝑘 = 0 

with roots  𝑟 = ±𝜔𝑖                      where                  𝜔 = √
𝑘

𝑚
 

Thus, the general solution is 

(a) (b) 
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𝑥(𝑡) = 𝑐1𝑒𝜔𝑖𝑡 + 𝑐1𝑒−𝜔𝑖𝑡 = 𝑐1cos 𝜔𝑡 + 𝑐2 sin 𝜔𝑡 = 𝐴 cos(𝜔𝑡 +  𝛿) 

where 

𝜔 = √
𝑘

𝑚
                                                                                       (Natural Frequency) 

𝐴 = √𝑐1
2 + 𝑐2

2                                                                             (amplitude) 

𝛿 = cos−1 ( 
𝑐1

𝐴
)   = sin−1 (−

𝑐2

𝐴
) = sin−1 (

𝑐2

𝑐1
)                (phase angle) 

 

This type of motion is called simple harmonic motion. Note that the natural frequency is an important 

characteristic of a vibrating structure. 

 

Example 1 

A spring with mass of 2kg has natural length 0.5 m. A force of 25.6 N is required to maintain it stretched 

to a length of 0.7 m. If the spring is stretched to a length of 0.7 m and then released with initial velocity 

0, find the position of the mass at any time t. 

 

Solution 

From Hooke’s Law, the force required to stretch the spring is 

𝑘(0.2) = 25.6 

𝑘 =
25.6

0.2
= 128 

Using this value of the spring constant k, together with m = 2 in Equation 1  

2
𝑑2𝑥

𝑑𝑡2
+ 128𝑥 = 0 

The solution of this equation is 

𝑥(𝑡) = 𝑐1 cos 8𝑡 +  𝑐2 sin 8𝑡                                                   (2) 

The initial condition is given as 𝑥(0) = 0.2. Hence from Equation (2), 𝑥(0) = 𝑐1 = 0.2. 

Differentiating Equation (2) 

𝑥′(𝑡) = −8𝑐1 cos 8𝑡 +  8𝑐2 sin 8𝑡 

Since the initial velocity is given as 𝑥′(0) = 0, 𝑐2 = 0 

So, the solution is 𝑥(𝑡) = 0.2 cos 8𝑡  

Comment: Without damping, the vibration will be continue forever without any energy loss 
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APPENDIX 5.5 MATHEMATIC MODELLING OF A VIBRATING SPRING WITH DAMPING 

(2N D  ORDER ODE)  

Consider the motion of a spring that is subject to a frictional force (in the case of horizontal spring) or a 

damping force (in the case where a vertical spring moves through a fluid), as shown in shown in Figure 

A5.5a. An example is the damping force supplied by a shock absorber in a car or a bicycle.  

 

 

 

 

 

Figure A5.5a. Modelling of (a) horizontal spring on a frictional floor & (b) vertical spring in a fluid 

 

Assume that the damping force is proportional to the velocity of the mass and acts in the direction 

opposite to the motion. Thus, 

damping force = −𝑐
𝑑𝑥

𝑑𝑡
 

where c is a positive constant, called the damping constant.  

Thus, Newton’s Second Law gives 

𝑚
𝑑2𝑥

𝑑𝑡2
= restoring force + damping force = −𝑘𝑥 − 𝑐

𝑑𝑥

𝑑𝑡
 

or 

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝑐

𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 = 0                                                                                                  

This is a second order linear differential equation. 

 

Solution: 

The auxiliary equation is  

𝑚𝑟2 + 𝑐𝑟 + 𝑘 = 0 

with roots  

𝑟1 =
−𝑐 + √𝑐2 − 4𝑚𝑘

2𝑚
                     𝑟2 =

−𝑐 − √𝑐2 − 4𝑚𝑘

2𝑚
                                   

 

 

(a) (b) 
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Case I: 𝒄𝟐 − 𝟒𝒎𝒌 > 𝟎                    (overdamping) 

The roots, r1 and r2, are distinct real roots and 

𝑥(𝑡) = 𝑐1𝑒𝑟1𝑡 + 𝑐2𝑒𝑟2𝑡 

Since c, m, and k are all positive, then √𝑐2 − 4𝑚𝑘 < 0, and the obtained roots r1 and r2 must be both 

negative. This shows that 𝑥 → 0  as  𝑡 → ∞. Typical graphs of x as a function of t are shown in Figure 

A5.5b. Notice oscillations do not occur. This is because 𝑐2 > 4𝑚𝑘 means that there is a strong damping 

force (high viscosity oil or grease) compared with a weak spring or small mass. 

 

 

Figure A5.5b.  Typical graphs for overdamping case 

 

Case II: 𝒄𝟐 − 𝟒𝒎𝒌 = 𝟎                    (critical damping) 

This case corresponds to equal roots 

𝑟1 = 𝑟2 = −
𝑐

2𝑚
 

The solution is given by 

𝑥 = (𝑐1 + 𝑐2𝑡)𝑒
−(

𝑐
2𝑚

)𝑡
 

and a typical graph is shown in Figure A5.5c. It is similar to Case I, but the damping is just sufficient to 

suppress vibrations. Any decrease in the viscosity of fluid leads to the vibrations of the following case. 

 

Figure A5.5c.  Graph for critical damping case 
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Case III: 𝒄𝟐 − 𝟒𝒎𝒌 < 𝟎                    (underdamping) 

Here the roots are complex 

𝑟1,2 = −
𝑐

2𝑚
± 𝜔𝑖 

where 

𝜔 =
√4𝑚𝑘 − 𝑐2

2𝑚
 

The solution is given by 

𝑥 = 𝑒
−(

𝑐
2𝑚

)𝑡(𝑐1 cos 𝜔𝑡 + 𝑐2 sin 𝜔𝑡) 

There are oscillations that are damped by the factor 𝑒
−(

𝑐

2𝑚
)𝑡

. Since c > 0 and m > 0, then 𝑒
−(

𝑐

2𝑚
)𝑡

< 0 so 

𝑒
−(

𝑐

2𝑚
)𝑡

→ 0 as 𝑡 → ∞. This implies that 𝑥 → 0  as  𝑡 → ∞; that is, the motion decays to 0 as time 

increases. A typical graph is shown in Figure A5.5d 

 

Figure A5.5d.  Graph for underdamping case 

 

Note: In actual engineering problem, most of the vibration system is in under-damped case with 

oscillation. Damping is controlled or designed appropriately so that oscillation of the vibration can be 

reduced significantly such as the one in critical-damped case.   

 

Example 2 

Suppose that the spring in Example 1 is immersed in a fluid with damping constant c = 40. Find the 

position of the mass at any time t if it starts from the equilibrium position and is given a push to start it 

with an initial velocity of 0.6 m/s. 

 

Solution 

The mass is m = 2 and the spring constant is k = 128, so the differential equation becomes 

2
𝑑2𝑥

𝑑𝑡2
+ 40

𝑑𝑥

𝑑𝑡
+ 128𝑥 = 0 
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or 

𝑑2𝑥

𝑑𝑡2
+ 20

𝑑𝑥

𝑑𝑡
+ 64𝑥 = 0 

The auxiliary equation is  

𝑟2 + 20𝑟 + 64 = (𝑟 + 4)(𝑟 + 16) = 0 

with roots -4 and -16, so the motion is overdamped and the solution is 

𝑥(𝑡) = 𝑐1𝑒−4𝑡 + 𝑐2𝑒−16𝑡 

Given 𝑥(0) = 0, so 𝑐1 + 𝑐2 = 0. Differentiating, 

𝑥′(𝑡) = −4𝑐1𝑒−4𝑡 − 16𝑐2𝑒−16𝑡 

So 

𝑥′(0) = −4𝑐1 − 16𝑐2 = 0.6 

Since 𝑐1 = −𝑐2, this gives 12𝑐1 = 0.6 or 𝑐1 = 0.05. Therefore 

𝑥(𝑡) = 0.05(𝑒−4𝑡 − 𝑒−16𝑡) 

Comment: With damping, the vibration will be reduced over the time due to energy loss 
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APPENDIX 5.6 MATHEMATIC MODELLING OF A DAMPED VIBRATION SYSTEM UNDER 

FORCED VIBRATION (2N D  ORDER ODE)   

Suppose that, in addition to the restoring force and the damping force, the motion of the mass is 

affected by an external force F(t).  

 

Figure A5.6.  Example of a vibrating damped mass-spring system due to road excitation 

 

The Newton’s Second Law gives 

𝑚
𝑑2𝑥

𝑑𝑡2
= restoring force + damping force + external force = −𝑘𝑥 − 𝑐

𝑑𝑥

𝑑𝑡
+ 𝐹(𝑡) 

 

Thus, the motion of the spring is now governed by the following nonhomogeneous differential 

equation. 

𝑚
𝑑2𝑥

𝑑𝑡2
+ 𝑐

𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 = 𝐹(𝑡)                                                                   (5) 

 

A commonly occurring type of external force is a periodic forcing function 

𝐹(𝑡) = 𝐹0 cos 𝜔0𝑡 

where 𝜔0 = 𝑒𝑥𝑐𝑖𝑡𝑖𝑛𝑔 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑟𝑐𝑖𝑛𝑔 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 

𝐹0 = 𝑎𝑚𝑝𝑙𝑖𝑡𝑢𝑑𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑜𝑟𝑐𝑒 

 

In this case, and in the absence of a damping force (c = 0), we can obtain the solution to be 

𝑥 = 𝑐1 cos 𝜔𝑡 + 𝑐2 sin 𝜔𝑡 +
𝐹0

𝑚(𝜔2 − 𝜔0
2)

cos 𝜔0𝑡                                   (6) 

If 𝜔 = 𝜔0,  then the applied frequency, 𝜔0 reinforces the natural frequency, 𝜔 = √
𝑘

𝑚
  and the result is 

vibrations of large amplitude. This is the phenomenon of resonance which is unfavorable in many 

engineering problems. Engineers should understand the natural frequency and exciting frequency of a 

structure to design it appropriately. 

Stiffness, k Damping, c 

Mass, m 

Displacement, x 

Force, F 
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APPENDIX 5.7 ANALOGUE BETWEEN VIBRATIONAL SYSTEM AND ELECTRIC CIRCUIT 

Some engineering systems, like the mechanical mass-spring-damper system and the electrical RLC 

circuit have similarities. These similarities can be seen in control system or control engineering study. 

When comparing, they are often analogous to each other. A common analogue is the force-voltage 

analogue as shown in Table A5.7. 

Table A5.7. Physical entities versus mathematical entities 

Mass Spring Damper System Electrical RLC Circuit 

x Displacement Q Charge 

𝑑𝑥

𝑑𝑡
 Velocity 𝐼 =

𝑑𝑄

𝑑𝑡
 Current 

m Mass L Inductance 

c Damping constant R Resistance 

k Spring constant  

(i.e stiffness) 

1

𝐶
 

Elastance (i.e. 
inverse of 
capacitance)   

F(t) External force E(t) Electromotive force 

 


