SOLVING PARTICULAR SOLUTION OF

LAPLACE EQUATION

WEEK 13: SOLVING PARTICULAR SOLUTION OF LAPLACE EQUATION

13.1 EIGENVALUE AND EIGENFUNCTION OF ODE (BACKGROUND - EXTRA INFO)

Find all the eigenvalues and eigenfunction of the following ODE, where Y'' = —

Y"+AY =0 whereY(0) =0 andY(2) =0

LetY = A;sin(wt + 6,) and
Y" = —w?A;sin(wt + 0,) = —w?Y

—w2Y+\Y = 0
A—w?Y =0

The solution Y can’t be zero and hence A — w?| =0,
where the eigenvalue, A = w? &

to a given differential equation.

The ODE above can be transformed to an eigenvalue problem:

the corresponding solution Y is the eigenfunction of the ODE.

Recall that eigenfunction represents each of a set of independent functions, which are the solutions

Y(y) = c1e®” + coye%
“Y(y) =ty

Case General solution of the ODE Particular solution of the ODE
Y'"=0 Using boundary condition,
Let r =root Y(0)=c; +c,(0)=0
Characteristic equation: 72 = 0 =0
Case #1: Repeated roots: 7y =0, 1, = 0 Y =cy
(A=0) Y2n)=0=c¢,

~ Y = 0 (No solution if A=0)

Y'+(—a?)Y =0
Let r =root
Characteristic equation:
r’—a?=0

Case #2: r=+vVa? = +«
(A=—a?)
a>0 Distinct roots: 1, = @, 1, = —«

~ Y = czcosh(ay) + cysinh(ay)

Hint: Refer section 12.4

Using boundary condition,
Y (0) = c¢5 cosh(0) + ¢, sinh(0) =0
c3(1) +c,(0)=0
;=0

=Y = c,sinhay
Y(21) = ¢ysinha(2m) = 0

Since a(2m) > 0 & sinh(+ve) is never
equal to zero for all a(2m), thusc, = 0




~Y = 0 (No solution if A= — a?)
Using boundary condition,
Y (0) = c¢5 cos(0) + ¢ sin(0) = 0
cs(1) +¢c4(0)=0
Cs = 0
- Y = ¢gsin(ay)

Y(2n) = ¢c.sin(2ma) = 0
Y + (?)Y = 0 (2m) = cosin(2ma)

Letr :roc.)t. . Possibility 1: If ¢, = 0, we will get no
Characteristic equation: lution. ¥ = 0
r>’+a?2=0 solution, ' = 1. v
Possibility 2: So, we check if sin(2ma)
Case #3: r=+yJ—a?=tai can be zero.
A=+ a?)
a>0 Complex conjugate roots: Since 2ma > 0 & sin(2wa) = 0
r=a, r=—a when 2ma = nm, where integer n =

1,2,3, ...
~Y(y) = cscos(ay) + cgsin(ay)
Then, ¢g # 0 in this condition.
Hint: Refer section 12.4

~ Yy = cgnsin(ay) where the a = %

forn=1,2,3, ..
(We have solution if A= + a?)

Think: Can the solution valid for n =
<., —2,—1,0? Hint: 2mac > 0

Eigenvalue for the ODE, A= + o = nTZ forn=1,2,3, ...

Eigenfunction for the ODE, Y,, = cﬁlnsin(gy) forn =123, ..

n=12>Y= calsin(%y)

n=2-2>Y-= CG‘Zsin(gy)

Thus, we have infinite solutions in the 3™ case, by using the superposition principle:
Yiorw =Y1+ Yo+ =23 C6,nSin(g)’)

Note that cg, can be solved further with Fourier series expansion & additional initial/boundary
condition. Then, the complete particular solution can be obtained.

The similar concepts discussed in section 13.1 can be used to solve the PDE problem.



13.2 SOLVING PARTICULAR SOLUTION OF ELLIPTIC PDE (LAPLACE EQUATION)
Consider a hot place of area (xy), find the steady state temperature distribution over the x and y
location, i.e. u(x, y).
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e Governing equation for the 2D Laplace equation

9%u N 0%u 0
0x2 = dy?
e Boundary condition 1 & 2: ou =0, a_u| =0 forO0<y<b
9xly=0 0xly=q

e Boundary condition3 & 4: u(x, 0) =0, u(x, b) =f(x) for0<x<a

Solution:

Step 1: Using separation of variable method: Let u(x,y) = X(x)Y(y)

X"Y+XY"=0
Step 2: Obtain 2 ODE equations
YII B XII B )\
-y X

Y —AY = 0 - (ODE #1)

X" +AX = 0 --- (ODE #2)

Case ODE #1 ODE #2 u(x,y) =Xx)Y ()
Y'"=0 X"=0
Let r =root Let r =root
Characteristic equation: | Characteristic equation: L
Case #1: |12 =0 r2 =0 = X%,00h0)
(A=0) | Repeated roots: Repeated root: 71, =0, = (e + ey )(cs + cax)
rn = O, T, = 0 r, = 0

Y(y) = c1e” + e | X(x) = c3e% + cuxe®™




“Y(Wy)=c + oy L X(x) =c3 + cux
Y'+(a®)Y =0 v
Let r =root Let )_( _ta X=0
Characteristic equation: etr —rog . .
2 2 _ Characteristic equation:
r“+a°=0 ’ )
Case #2: =4+ 2 — 4qi rf-at=0
(A= ' rEIvoet=Ia r=+Jo? = +a Uy = X(0)Y, ()
e . = (cscos(ay)
as) Complex conjugate Distinct roots: N ] )( L
a>0 | roots: ro=di, T, = istinct roots: c6SL.n(ay) cycosh(ax)
i T =q T, = —a + cgsinh(ax))
= X(x) = cycosh(ax) +
- Y(y) = cscos(ay) + cgsinh(ax)
cesin(ay)
12 _ ~2 —
"+ (—afy =0 X"+ (o)X = 0
Let r =root _
Characteristic equation: Let 7 =root
2 2 q " | Characteristic equation:
rf-at=0 r’+a?2=0
Case #3: r=+Ja2 = +a . suz = X3(0)Y3(y)
(= - - r=+—0a? = tai
+a*) | Distinct roots: Complex conjugate roots: = (cocosh(ay)
a>0 n=a @ 1rp=-a e "I+ ¢qosinh(ay) ) (ciqcos(ax)
rn=ai, rp, =—al ]
+ cq,sin(ax) )
o Y(y) = . _
cocosh(ay) + ..X(_x) = cyqcos(ax) +
cioSinh(ay) c1zsin(ax)

In fact, we can find the general PDE solution to the problem by using superposition principle:

u(x,y) = (c1 + ¢y )(c3 + cax ) + (cscos(ay) + cesin(ay) ) (c;cosh(ax) + cgsinh(ax))

Solution of Case 1 Solution of Case 2

+ (cgcosh(ay) + c1gsinh(ay) ) (cllcos(ax) + c1p5in(ax) )

Solution of Case 3

where there are 12 unknown coefficients (c; — ¢;2). Next we will continue to solve those unknowns
by applying the initial/ boundary conditions.

To apply the following boundary conditions, differentiation of the PDE solution is needed.

. Ju _ . 6_u _
Boundary condition (BC) #l.a o 0 ,BC#2: P =0

xX=a

Case Differentiation of u(x,y) = X(x)Y(y) wrt x
u; = X; ()1 (y)
= (01 + czy)(c3 + c4x)

Case #1:
(A=0) du,
R +
Ox (C1 Gy )(C4)
Applying BC #1 or BC #2, we get (C1 +cy )(04) =0




Since (01 + czy) #0,c,=0

U (x,y) = (61 + cy)(cz) = (A1 + B1y)

u; = X5 ()2 (y)
= (cscos(ay) + cgsin(ay) ) (c;cosh(ax) + cgsinh(ax))

0
% = (CSCos(ay) + cgsin(ay) ) (c;asinh(ax) + cgacosh(ax))

Applying BC #1: (cscos(ay) + cgsin(ay)) (cga) = 0

Case #2: Since (cscos(ay) + cgsin(ay)) # 0, # 0, thus cg = 0
(A\=—a?)
a>0 - u,(x,y) = (cscos(ay) + cgsin(ay) ) (c;cosh(ax))
Ju
- a_xz = (65 cos(ay) + cgsin(ay) ) (c;asinh(ax))
Applying BC #2: (cscos(ay) + cgsin(ay) ) (c;asinh(aa)) =0
Since (cscos(ay) + cgsin(ay)) # 0,a # 0, sinh(aa) # 0 foraa > 0
Hence, c; =0
% Uy (x,y) = 0 (No solution)
suz = X3(x)Y3 ()
= (cgcosh(ay) + cigsinh(ay) ) (cllcos(ax) + c1psin(ax) )
dus , .
T = (cocosh(ay) + crosinh(ay) ) (—cyiasin(ax) + cipacos(ax) )
Applying BC #1: (cocosh(ay) + cyosinh(ay) ) (cza ) =0
Since (cocosh(ay) + cyosinh(ay) ) # 0 & a # 0
Hence, ¢1, =0
Case #3:
)
O‘(; i% ) - us = (cocosh(ay) + cipsinh(ay) )(cy1cos(ax))
Ju
- a—; = (cocosh(ay) + cpsinh(ay) ) (—ciiasin(ax))

Applying BC #2: (cocosh(ay) + ¢;osinh(ay) ) (—ciiasin(aa)) = 0
Since (cocosh(ay) + cyosinh(ay) ) # 0 & a # 0
c11 # 0 when sin(aa) =0 for aa = nm, where a = % ,n=1273..

There are infinite solutions in Case #3:
nm . onm nm
s = (ConCOSh(—¥) + cronsinh(—) ) (crancos(—x))

U3y = (A3lncosh(%y) + Bg’nsinh(%y) ) (cos(% x))wheren =123,..

In summary, the eigenvalue and eigenfunction of the PDE for each case are listed below:

Case

PDE solution Eigenvalue and eigenfunction of PDE

Case #1:

u(x,y) = A, + Byy Eigenvalue, A=0




(A=0) Eigenfunction = A; + B1y

Case #2: No solution
(A= —a?) =0 hence no eigenvalue and no
a>0 2= eigenfunction
Uz Eigenvalue, A= + a,,% = (n—”)z
Case #3: 7 nm , T " a
(A= + a?) = (Ag'nCOSh(? V) Eigenfunction u3'nnn
nm nm - i
a>0 + B3 psinh(—y) ) (cos(—x))) - (A3'nCOSh( a Y)
heren = 1,2,3 ¢ + By psinh(— ) ( & )
wheren = 1,2,3, ... 3 SiN Z V) cos z x)
Step 4: Superposition Principle to find usprq1 (X, y) = X1Y; + X, ¥, + X3V
= nm . onm nm
Ut ) = (A +B1y) ) (A3nc0sh(~y) + Bynsinh(-y) ) (cos(=rx))

solution 1 from Case1 =1

solution 2 from Case 3

Expanding it, we obtain

teorat(6,9) = (A + Bry ) + Bty (Asncosh () (cosCE)) + Bt (Bansinh (2 y) (cos ) )

where there are 4 remaining unknowns (i.e. A;, By, A3, & B3 p).

Step 5: Continue to apply the remaining BC & Fourier series expansion.

BC#3:u(x, 0)=0 for0<x<a
Urorar (6, 0) = Ay + Tt (A3 nc0Sh(E (0)) + By nsinh(*=(0)) ) (cos(=x)) =0

= Ay +X-1(A30) (COS(%X)) =0

Recall Half-range Fourier Cosine Series Expansion:

f(x) = ap + Y= (a, cos nwx)
where a, = %forf(x) dx;
2

a, = Zforf(x) cos nwx dx;

We notice f(x) =0 ;A; = %forf(x) dx =0 ;A3 = %forf(x) cosnwx dx =0

= Uora (X, y) = (31)’) + Y=t <B3,nsinh(%y) (COS(% x)))



Step 5: Continue to apply the remaining BC & Fourier series expansion.

BC#4:u(x, b) =f(x) for0<x<a

Urotar (%, b) = By (b) + Xty (Bsnsinh (b)) (cos(=x)) = f(x)

Recall Half-range Fourier Cosine Series Expansion:

f(x) = ag + Yn=1(a, cosnwx)
where a, = %forf(x) dx;

= %forf(x) cos nwx dx;

We notice B;b = %forf(x) dx ; (B3,nsinh(%n b)) = %fotf(x) cosnwx dx
b4 . 2m
where angular frequency, w = = period, p = - = 2a

Finite interval, T=a, half period, L = g = =a

112 . oonm 2 (° T
Bib = Ef f(x) dx Bglnsmh(— b) = —f f(x)cos n_x dx
0
a
_ fo f(x)dx Bsp = —f f(x) cosnnxdx
1 ab asmh(— b) a

Thus, we have solved all the unknowns and obtain the particular PDE solution:

. onm ni
o (69) = By + ) (Bapsinh(—)) (cos(-1)

n=1

a d [0e]
Utorar (X, ) = My + Z

o ff(x)cosn xdxsmh(—y) (cos(—x))

asmh(— b)

n=1



Example: Let the temperature at the top end, f(x) = 100, dimension, a = b = 1 for the previous
problem.

=M By, = —f f(x)cosn x dx
! ab ' asmh(— b)
_foodr 2 e
oo T simhCED Sy T
= W.f 100 cos nmx dx
100 sinnmx
smh(nn) [ ]0
2 100 sinnm
B sinh(nm) ( nr )
= 200 sinnmy .
Y Uporar (X, y) = 100y + Zl (sinh(nn) ( — )smh(nny)) (cos(nmx))
n=

We can use the PDE solution to estimate the temperature distribution at any point on the heated plate.
Example: The temperature results at 60 X 60 points of the (x, y) locations have been plotted below:

3D plot of uspeqr (X, V) wrt x- & y- axes 2D contour plot
1 T T T T T T T T
X 0.322034 0.9+ 90.9091 90.9091 4
100 l): 3‘18;;:39 08l 81.8182 81.8182 —— |

80 o5 ) 07k 72.7273 72,7273 — |

60

u(x,y)
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-Due to boundary conditions on 4 sides of the plates, | -Top view of the 3D plot with the contour,
the temperature becomes stable after certain | i.e.line with same magnitude.

period.
Try to find the location of the plate that has
For example, Uspeq;(0.322,0.814) ~ 81 °C. Note | temperature around 80 °C.

that 20 terms are used for plotting the graphs. For | Hint: Orange color

higher accuracy, more terms & more grids can be
included but computational time will be increased.

Try to verify the answer:
Upprar(0.322,0.814)




~ (100(0.814) +

200 (si :
20, (Sinh(nn) (%) smh(0.814nn)) (cos(0.322nn)))

Consider a hot place of area (xy), find the steady state temperature distribution over the x and y
location, i.e. u(x,y).

Temperature as a

s function of position Thermometer
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u(x,0) =0

Top view of the 2D heated plate 3D view of the heated plate

e Governing equation for the 2D Laplace equation

0%u N 0%u — o

x2  dy?
e Boundary condition: u(0,y) =0,u(1,y) =0 for0<y<1
e Boundary condition: u(x, 0) =0, u(x, 1) =100 for0<x<1

Solution:

Note that the PDE equation remains the same while the boundary conditions are changing. Thus,

The general PDE solution remains the same as below:

u(x,y) = (c1 +cy )(c3 + c4x) + (CSCOS(O(y) + cgsin(ay) ) (c;cosh(ox) + cgsinh(ax))

Solution of Case 1 Solution of Case 2

+ (cgcosh(ay) + c1osinh(ay) ) (cllcos(ax) + ¢qpsin(ax) )

Solution of Case 3

where there are 12 unknown coefficients (c; — ¢12)-



To apply the following boundary conditions, differentiation of the PDE solution is no needed.

Boundary condition (BC) #1: u(0,y) = 0,BC#2: u(1,y) =0

Case Applying BC #1 & BC #2
u =X, ()1 ()
=(c1 + 2y )(c3 4 cax)
Applying BC #1, (c1 +cy )(03) =0
Case #1: Since (¢; + ¢,y ) #0,c3=0
(A=0) U = (Cl + Ly )(C4X)
Applying BC #2, (c1 +cy )(04) =0
Since (¢; + ¢,y ) #0,c,=0
~ u1(x,y) = 0 (No Solution)
u; = X, ()Y, (y)
= (cscos(ay) + cgsin(ay) ) (c;cosh(ax) + cgsinh(ax))
Applying BC #1: (cscos(ay) + cgsin(ay)) (c;) =0
Case #2: Since (cscos(ay) + cgsin(ay)) # 0, thusc;, =0
(\=—a?) - u,(x,y) = (cscos(ay) + cgsin(ay) ) (cgsinh(ax))
a>0
Applying BC #2: (cscos(ay) + cgsin(ay) ) (cgsinh(a)) = 0
Since (cscos(ay) + cgsin(ay)) # 0, sinh(a) # 0 fora >0
Hence, cg =0
% Uy (x,y) = 0 (No solution)
s uz = X3(0)Y: ()
= (cocosh(ay) + cyosinh(ay) ) (ci1cos(ax) + cipsin(ax) )
Applying BC #1: (cocosh(ay) + cosinh(ay) ) (c11 ) =0
Since (cocosh(ay) + cyosinh(ay) ) # 0, hence, ¢y =0
Case #3: _ . ,
5 - u3 = (cocosh(ay) + cigsinh(ay) )(cizsin(ax))
A=+ o)
a>0 . ) )
Applying BC #2: (cocosh(ay) + cyosinh(ay) ) (c1zsin(a)) =0
Since (cgcosh(ay) + c1gsinh(ay) ) * 0,
c12 # 0 when sin(a) =0 for a = nm, wheren = 1,2,3 ...
There are infinite solutions in Case 3:
Ugpy = (cg,ncosh(nny) + c19nSinh(nmy) ) (clz,nsin(nnx))
U3y = (A3,ncosh(nny) + B3 ,sinh(nmy) ) (sin(nmx))wheren =1,2,3,...

In summary, the eigenvalue and eigenfunction of the PDE for each case are listed below:

Case PDE solution Eigenvalue and eigenfunction of PDE

Case #1: u; =0 No solution




(A=0) hence no eigenvalue and no
eigenfunction
Case #2: No solution
(A= —a?) =0 hence no eigenvalue and no
a>0 2= eigenfunction
Case #3: Uz g Eigenvalue, A,= + a,,* = (nm)?
A=+ 0?) = (A3 ,cosh(nmy) Eigenfunction us
a>0 + B3 sinh(nmy) ) (sin(nmx)) = (A3 ncosh(nmy)
wheren = 1,2,3, ... + B psinh(nmy) ) (sin(nmx))

Step 4: Superposition Principle to find usprq1 (X, y) = X1Y; + X, ¥, + X3V

Utotal (X, y) = Z(A&ncosh(nny) + B3 psinh(nmy) ) (sin(nmx))

n=1

solution from Case 3

Expanding it, we obtain

teorat(6,9) = Zima (A3 ncosh(nmy)(sin(nnx))) + Siiey (Basinh(nmy) (sin(nm)

where there are 2 remaining unknowns (A3 , & B3 ;).

Step 5: Continue to apply the remaining BC & Fourier series expansion.

BC#3:u(x, 0)=0 for0<x<a

Utotal (x,0) = Z;o:l (AS,n(Sin(nnx))) =0

Recall Half-range Fourier Sine Series Expansion:

f(x) = Y5 1(by, sinnwx)
where by, = %forf(x) sinnwx dx

We notice f(x) =0 ;A43, = %forf(x) sinnwxdx =0

= Utorar(%,Y) = Tiiz1 (Bamsinh(nmy) (sin(nmx)))

BC#4:u(x, 1) =100 for0<x <1

Uorar (X, 1) = Xpzq (Bg,nsinh(mr) (sin(mrx))) =100



Recall Half-range Fourier Sine Series Expansion:

f(x) = Xp=1(by sinnwx)
where b, = %forf(x) sinnwx dx

We notice Bj,sinh(nm) = %forf(x) sinnwx dx
where angular frequency, w = 1, period,p = — =2, f(x) = 100

Finite interval, T=1, half period, L = g = % =1

2 1
B3 psinh(nm) = If 100 sin nwx dx
0

200 1
j sinnwx dx = [1-(=1"]

_ 200 [—cosnn—(—l) 200
sinh(nm) Jo

nr " nmsinh(nm)

sinh(nm)

Thus, we have solved all the unknowns and obtain the particular PDE solution:

orar(6,Y) = ) (Bapsinh(uny) (sin(nr))

[oe]

_ 200 . Olsink _
Utotal (X, Y) —Z m[ — (—=D"]sinh(nmy) (sin(nmx))

We can use the PDE solution to estimate the temperature distribution at any point. Example: The
temperature results at 60 X 60 points of the (x, y) locations have been plotted below:

3D plot of Uspeq; (X, V) wWrt x- & y- axis 2D plot contour plot
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certain period.

temperature around 60 °C.




Hint: Green color
For example, Ustq;(0.322,0.814) = 60 °C. Note
that 20 terms are used for plotting the graphs. For
higher accuracy, more terms & more grids can be
included but computational time will be
increased.

Try to verify the answer:
Utoraqr(0.322,0.814)

~23111< 2011 — (—=1)"]sinh(0.814nm) (sin(0.322nn))>

nnsinh(nm)

13.3 SOLVING NON-HOMOGENEOUS BOUNDARY CONDITION VIA SUPERPOSITION

PRINCIPLE
A Dirichlet problem for a rectangle can be readily solved by separation of variables when
homogeneous boundary conditions are specified on two parallel boundaries. However, the method
of separation variables is not applicable to a Dirichlet problem when the boundary conditions on all
four sides of the rectangle are non-homogeneous. For example,

Nu+mu_0 0<x< 0<y<b
axz  ayz < y
u(0,y) = F(y), u(a,y) =G®), 0<y<b

u(x,0) = f(x), u(x,b) = g(x), 0<x<a

The general PDE solution remains the same as below:

u(x,y) = (01 +cy )(c3 + c4x) + (cscos(ay) + cgsin(ay) ) (c;cosh(ax) + cgsinh(ax))

Solution of Case 1 Solution of Case 2

+ (cocosh(ay) + crosinh(ay) ) (ciicos(ax) + cipsin(ax) )

Solution of Case 3

To apply the following boundary conditions:

Boundary condition (BC) #1: u(0,y) = F(y), BC#2: u(a,y) = G(y)

Case Applying BC #1 & BC #2 or (BC #3 & BC #4 return same result)
u; =X, ()Y ()
Case #1: =(c1+ 2y )(c3 4 cax)
(A=0)
Applying BC #1, (¢; + ¢,y )(c3) = F(y)




Applying BC #2, (01 +cy )(c4a) =G(y)

Since no unique ¢; — ¢4 can be obtained via the BC #1-#4, no particular
solution can be obtained. This is due to non-homogeneous BC.
u; = X5 (0)Y2(y)
= (cscos(ay) + cgsin(ay) ) (c;cosh(ax) + cgsinh(ax))

Case #2: . .
(= — a?) Applying BC #1: (cscos(ay) + cgsin(ay)) (c;) = F(y)
>0 Applying BC #2:
(c5cos(ay) + cgsin(ay) ) (c;cosh(aa) + cgsinh(aa)) = G(y)
Since no unique ¢ — cg can be obtained via the BC #1-#4, no particular
solution can be obtained. This is due to non-homogeneous BC.
suz = X3(0)Y: ()
= (cocosh(ay) + cosinh(ay) ) (ciicos(ax) + cipsin(ax) )
Case #3: . ,
(e + o) Applying BC #1: (cocosh(ay) + cyosinh(ay) ) (c11 ) = F(¥)
a>0 Applying BC #2:

(cgcosh(ay) + cigsinh(ay) ) (cllcos(aa) + cypsin(aa) ) =G(y)

Since no unique c¢g — ¢;, can be obtained via the BC #1-#4, no particular
solution can be obtained. This is due to non-homogeneous BC.

In the previous examples, homogenous BC can ensure the unique particular solution of a boundary
value problem to exist. However, it is difficulty to get the solution directly if non-homogeneous BC is
encountered. The PDE problem with non-homogeneous can be solved if it can be separated into sub-
problems with homogeneous BC. For example,

Sub-problem #1 with homogeneous BC: Sub-problem #2 with homogeneous BC:
0%u; 0%y 0%u, 0%u,
W-l'a—)]z:o, O<x<a,0<y<b W-I'a—yz:(), O<x<a,0<y<b
u1(0;}’):0;u1(a;}0:0: 0<)’<b uz(O'}’)=F(}’)'u2(a'3’)=G(}’):0<y<b
u(x,0) = f(x),u 1 (x,b) = g(x),0 <x<a |u,(x,0)=0u,(xb)=0, 0<x<a

As shown in the figure below, PDE due to non-homogeneous PDE can be solved by separating it into
two sub-problems, where the solutions of sub-problem #1, u, (x, y) and sub-problem #2, u, (x, y) can
be added in the superposition manner to obtain the total solution, u(x,y).
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Note: V2 is called Laplacian or Laplace operator. For 2D problem, V2= % + :—yz

In this way, u satisfies all boundary conditions in the original problem:



u(x,y) =uy(x,y) + uy(x,y)

For example,

Solution of sub-problem 1:
U (x,9) = Yp=1 {Ancosh%ny + aninh%ny} sin %ﬂ X
where

Anzgfoaf(x)sin%xdx ; B, = foag(x)sin%xdx—Ancosh%b)
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Solution of sub-problem 2:
u,(x,y) = Yn=q {Cncosh%x + DnsinhT;—”x} sinT;—ny
where
C =3faF( )sinyd D —;(EfaG( YsinZydy —C coshn—”a)
n=3Jo FY L yay n h%aboy , yay —Cn 5

sin

Total Solution of original problem:

ux,y) = Yo {Ancosh%y + aninh%y} sin%x + Yo {Cncosh%x + Dnsinh%x} sin%y

where

A, = gfoaf(x) sin%x dx ; B,=—
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Cn:;fan(y)51n7;—ﬂydy ; Dn:m(ngaG(y)smT;—nydy—Cncosh%na)
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(E foag(x) sm%x dx — A, cosh%b)




