SOLVING PARTICULAR SOLUTION OF
HEAT EQUATION & WAVE EQUATION

WEEK 14: SOLVING PARTICULAR SOLUTION OF HEAT EQUATION & WAVE EQUATION

14.1 STRATEGY TO SOLVE HOMOGENEOUS PDE PROBLEM VIA SEPARABLE OF VARIABLE

Previously we have learned how to apply separation of variable method to solve the Laplace equation,
then we formed the boundary conditions of the problem and apply it together with the Fourier series
expansion to obtain the particular PDE solution. Same strategy is used to solve the heat equation and
wave equation in this chapter, as summarized below:

Let u = dependent variable, x, t = independent variables
Step 1: u(x,t) = X(x)T(¢t)

Step 2: Obtains 2 ODE equations using separation constant, —A. Let the coefficient of numerator to
be 1 for easier calculation.

Step 3: Consider 3 cases: A=0 ; A= — a? ; A= a?, where a > 0
Then, we can obtain all possible solutions, 1y, u,, & Uz respectively for each case.
Step 4.1: If initial/ boundary conditions can’t be formed/ obtained,
General PDE solution via superposition principle, u(x,y) = cyu; + cou, + c3us,
where ¢4, ¢, 3 are unknowns.
Step 4.2: If initial/ boundary conditions can be formed/ obtained,

Then, we proceed to apply the homogeneous BC to solve the particular solution, uq, u,, & us;
for each case. Then, eigenvalue and eigenfunction can be identified for case with solution and
they can be combined to form the total solution.

Step 5: Continue to apply the remaining initial/ boundary conditions & Fourier series expansion to
solve the remaining unknown.

Particular PDE solution via superposition principle, u(x,y) = u; + u, + us,

where ¢4, ¢, c3 are found.



14.2 SOLVING PARTICULAR SOLUTION OF PARABOLIC PDE (HEAT EQUATION)
Consider a thin rod of length L with an initial temperature f(x) throughout and whose ends are held at

temperature zero for all time t > 0. Given these initial/boundary conditions, find the change of the
temperature over the time and x location, i.e. u(x, t).

=
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=¥

1D rod with boundary conditions on both ends and initial temperature of the bar.

e Governing equation for the 1D heat equation

0’u _ du
dx2 ot
e Boundary condition 1&2: u(0, t) =0,u(L, t) =0 fort >0
e Initial condition :u(x, 0) = f(x) for0<x <L

Solution:

Step 1: Using separation of variable method: Let u(x,t) = X(x)T(t)

kX"'T = XT'
Step 2: Obtain 2 ODE equations
TI XII
kT- X

T' + KT = 0 --- (ODE #1)

X" 4+ AX = 0 — (ODE #2)

Case ODE #1 ODE #2 u(x,y) = X(x)T(t)
X"=0
, Let r =root
T'=0 . .
Characteristic equation:
Let r =root 2=
Characteristic equation: Repeated root: 75 = 0, , = s uy = X, 0)T, ()
Case#l: [r=0 0 = (1 )(cz + c3x)
()\:0) = Alx + Bl
_ . L0t
T.(?(t_) C_lec X(x) = c,e%% + c3xe*
v -1 2 X(x) =cy +c3x




X'"—a?X=0
Let r =root

“T(t) = C7e—a2kt

T' — (KT =0 Characteristic equation:
Let r =root r’—a?=0
Case #2: | Characteristic equation: r = +Ja2 = +a Uy z_ktXZ(x)TZ(t)
(A= — a?) r—a’k=0 - - = c,e® ™ (cscosh(ax)
a>0 r=a’k Distinct roots: + 66512111(h(ax))
"= r = —a = e® k (A,cosh(ax)
AT(t) = cie®kt ' + B,sinh(ax))
&~ X(x) = cgcosh(ax) +
ceSinh(ax)
X"+ (a®)X =0
Let r =root
T + a?kT =0 Characteristic equation:
Let 7 =root r’+a2=0 s ug = X3(O)T5 ()
Case #3: | Characteristic equation: r=+J—a? = +ai ,
A=+ a?) r’+a’k=0 = (c;e™* ) (cgcos(ax)
a>0 r=-a’k + cosin(ax) )

Complex conjugate roots:
nn=ai, rp, =—al

&~ X(x) = cgcos(ax) +
cosin(ax)

= =@kt (Azcos(ax)
+ B3sin(ax) )

In fact, we can find the general PDE solution to the problem by using superposition principle:

u(x, t) =

Aix + By
N———

+ ekt (4,cosh(ax) + Bysinh(ax))

Solution of Case 1

Solution of Case 2

+e~kt (A5cos(ax) + Bssin(ax) )

Solution of Case 3

where there are 6 unknown coefficients (4; — B3). Next, we will continue to solve those unknowns
by applying the initial/ boundary conditions.

To apply the following boundary conditions.

Boundary condition (BC) #1: u(0, t) = 0, BC#2:u(L, t) =0

Case

Applying BC #1 & BC #2

Case #1:
(A=0)

ug = X1 ()T (8)
= Alx + Bl

Applying BC#1: u,(0,t) = A;(0)+B; =0

Thus,B; =0
- u1 = Alx

Applying BC #2, we get u, (L, t) = AL =0
SinceL #0,4, =0

~ Uy (x,t) = 0 (No solution)




, Uy = Xo ()T, (t)
= e% ¥t (A,cosh(ax) + B,sinh(ax))

Applying BC #1: u, (0, t) = e~%°kt (4,)=0
Comparing coefficient ekt thus A, =0
(Note: ekt % 0 as the temperature changes over time, else no solution)

Case #2:
0= — a?) - uy(x,t) = Bysinh(ax)
a>0 2
Applying BC #2: u, (L, t) = e~ ¥t (B,sinh(al) ) = 0
Comparing coefficient e~ @kt (stinh(aL) ) =0
Since sinh(al) will not be zero for o« > 0, thus B, = 0
Hint: aL > 0
~ Uy (x,t) = 0 (No solution)
, Uz = X3(x)T3(¢)
= e~ %kt (A3cos(ax) + Bysin(ax) )
Applying BC #1: u3(0,t) = gkt (A3 ) =0
Comparing coefficient gkt A3 =0
Case #3: > uy = e @kt (Bssin(ax) )
A=+ a?)
a>0

Applying BC #2: uz (L, t) = g~ a’kt (B3sin(aL)) =0
Comparing coefficient e~**¥t; (Bysin(aL) ) = 0

Since B3 # 0 when sin(alL) =0 for al. = nm, where o = % ,n=1273..

There are infinite solutions in Case #3:
nm\2

Usp = e~ (T) ke (B3,nsin(nL—n x) ) wheren =1,2,3,...

In summary, the eigenvalue and eigenfunction of the PDE for each case are listed below:

Case PDE solution Eigenvalue and eigenfunction of PDE
No solution
Case #1: (e t) =0 hence no eigenvalue and no
(A=0) b= eigenfunction
Case #2: No solution
(A\=—a?) _ hence no eigenvalue and no
a>0 uz(x,t) =0 eigenfunction
nm 2
Case #3: Eigenvalue, A= + a,* = (T)
(A\=+0a?) (Y ke N Eigenfunction u
iso) | wan=e TV (Bysin(Try) | Figenfunction us -
= e_(T) K (B, sin(—x
3n (L )




Step 4: Superposition Principle to find Usprqi (%, t) = X1T1 + X,T, + X375

d 2
Ugotar (X, 1) = Z e_(nL_n) “ (B3,n5in(72_nx) )
n=1

solution from Case 3

where there are 1 unknown remaining (i.e. B3 ).

Step 5: Continue to apply the remaining BC & Fourier series expansion.

BC#3:u(x, O) =f(x) for0<x<L

Urorar(,0) = Tiy (Bynsin(=x) ) = f(2)

Recall Half-range Fourier Sine Series Expansion:

f(x) =Yn-1(b, sinnwx)
where by, = %forf(x) sinnwx dx

Precaution: L in the formula indicates the half period, i.e. L = g = % . Do not mix it with the length

of the 1D bar, which is using the same symbol, L as well.

Note that for (i) Half-range expansion: Finite interval, T = half period, L
(ii) Full-range expansion: Finite interval, T = full period, 2L

We notice By, = b,, = %fotf(x) sinnwx dx ,

wherew == &

=18

From 0 < x < L, t = length, L. For half-range expansion, T = half period, L. Thus, in this
case it happens to have t = half period, L = length, L in this special case.

Precaution: Note that it would be different for full-range expansion case.
2 (L .
- By, = Zfo f(x) smn%x dx

Thus, we have solved all the unknowns and obtain the particular PDE solution:

00 2
 Utotar (X, 1) = Z e_(nL_n) i (B3,nSin(ﬂx) )
n=1 L



- _(n_ﬂ)zkt 2 (¢t oom _ onm
Ugorar (X, ) = Z e \L I f(x)sinn X dx sm(T x)
n=1 0

Example: Let the f(x) = 100, dimension, length, L = m, PDE coefficient, k = 1 for the previous
problem.

B —ZfL()' Zxd
3n =7 Ofx sanx X

2 Vs
= —f 100 sinnx dx
T Jy

_ @ [—cosnx]:

T n
_ 200 (—cosnn —1)

n n

Vs
_ 200 <1 — (—1)">

T n

nrm 2 o \n
g0 = B e () OF (2 (20 sin() )

™

=y et (ﬂ (—1_(;1)71) sin(nx) )

s

We can use the PDE solution to estimate the temperature distribution at any point on the cooled rod.

Example: The temperature results at 50 X 500 points of the (x, t) locations for a duration of 10s have
been plotted below:

3D plot of Uuspeqr (x, t) wrt x- & t- axes ‘ 2D contour plot ‘




100 t 0.681363
X 1.21817
U60.4078

-Due to boundary conditions on both sides of the 1D
rods and the initial temperature of the rod, the
temperature of the rod changes over time, and it is
converging to the BC temperature, i.e. 0 °C.

For example, U;p1q:(1.218,0.681) = 60 °C. Note
that 20 terms are used for plotting the graphs. For
higher accuracy, more terms & more grids can be
included but computational time will be increased.

Try to verify the answer:
Urorar (1.218,0.681)

~ 32 e 068D (20 (12ED0 gin(n(1.218)) )

T n

-Top view of the 3D plot with the contour,
i.e. line with same magnitude.

Try to find the location of the plate that
drops to 4.7619 °C last.

Hint: max of ustq at fixed time ; sin
characteristic.

By increasing the contours,
we can observe that the
temperatures of the whole
bar takes around 7s, in
order to drop to less than
0.1 °C due to BC on both
ends.

Relationship between Laplace equation and heat equation:

In the heat equation example:

0%u _Ou

9x2 ot

We observe that the temperature results become stable/ no change after some durations. This means

a . L - .
that 6—1: = 0 fort — oo (i.e.change of temperature, u over time is zero for sufficient large duration, t).

Depending on our application, we will go for

2
(i) Solving heat equation, kaTZ = 2—1; if we are interested in finding out the change of the

temperature, u over time.

Note: The solution u(x, t) contains the transient solution at beginning and steady state

solution whent — oo .

2
(ii) Solving Laplace equation, kZTZ =0 by letZ—I: = 0 only if we are interested in finding out

the stable temperature without changes over time.
Note: The solution u(x) contains the steady state solution only.




14.3 SOLVING PARTICULAR SOLUTION OF HYPERBOLIC PDE (WAVE EQUATION)
Consider a string of length L, stretched taut between 2 points on x-axis (e.g. x=0 and x=L)., find the
change of vertical displacement with respect to time and x location, i.e. u(x, t).

d

0 Ly L

Transverse vibration u(x, t) in rod of length L

The string is fixed at both ends like guitar string.

e Governing equation for the 1D wave equation
,0%u  0d%*u

“oxz T o2
e Boundary condition #1 & #2: u(0, t) =0, u(L, t) =0 fort >0
e Initial condition #1 & #2 : u(x, 0) = f(x), 3—1; = g(x) for0<x <L
t=0
Note: For the string’s vibration, u(x, 0) = initial displacement, while ut(x, 0) = initial
velocity.
Solution:

Step 1: Using separation of variable method: Let u(x,t) = X (x)T(t)

a’X"T = XT"
Step 2: Obtain 2 ODE equations
XII B TII B )\
X a’T

T" + a?AT = 0 --- (ODE #1)

X" 4+ 2AX = 0--- (ODE #2)

Case ODE #1 ODE #2 u(x,y) = X(x)T(t)
ety o X =0 2y = K0T (O
Case #i1; | o7 —root . Letr =root = (c1 + ¢t )(c3
(A=0) Characteristic equation: | Characteristic equation: 7% = 4
r2=0 0 ¢sx)
Repeated root: Repeated root:




7'1=0, 7'2=0

T(t) = c,e° + c,te®
T(t) =0 + Czt

T1=0, T2=0

X(x) = c3e%% + c4xe®*
L X(x) =c3+cux

T" — (a?a®)T =0
Let r =root
Characteristic equation:
r?—a?a®=0

X'—a?X=0
Let r =root
Characteristic equation:
r’—a?=0

LUy = X () T2(0)

= aai, r, = —aal

~ T(t) = cycos(aat) +
cipSin(aat)

Complex conjugate roots:
n=ai, T, = —al

&~ X(x) = cq1cos(ax) +
c125in(ax)

((7:\?56 122:) Distinct roots: r=dve? = fa = (¢s cosh(aat)
== r, =Va?a? = aa, [
a>0 1 Distinct roots: + Cg sinh(aat) ).
r = —Ja?d? = aa B _ (c;cosh(ax)
2 = r, =—a
1— W 2 — 1
+ cgsinh(ax))
~ X(x) = c;cosh(ax) +
- T.(t) = cscosh(aat) + cgsinh(ax)
ceSinh(aat)
X"+ (@*)X =0
” 227 —
T_+aaT—0 Let 7 =root
Letr —roc_)t. . Characteristic equation:
C?arac';er;stlc equation: 24+a2=0 sus = X35 ()
Case#3: |7 T@a =0 r=4y—0a? = tai ( (aat)
S = (cq cos(aat
(A=+a%) Complex conjugate roots: o
a>0 + ¢10 sin(aat) ).

(cllcos(ax)
+ c1zsin(ax) )

In fact, we can find the general PDE solution to the problem by using superposition principle:

u(x,t) = (01 + c,t )(03 + c4x) + (c5 cosh(aat) + cg sinh(aat))(cycosh(ax) + cgsinh(ax))

Solution of Case 1

Solution of Case 2

+ (cg cos(aat) + cq9 sin(aat))(cllcos(ax) + c1psin(ax) )

where there are 12 unknown coefficients (c; — ¢;,). Next, we will continue to solve those unknowns

Solution of Case 3

by applying the initial/ boundary conditions.

To apply the following boundary conditions.

Boundary condition (BC) #1: u(O, t) =0, BC#2: u(L, t) =0

Case Applying BC #1 & BC #2
uy = X, (0)T1(0)
= (01 + czt)(c3 + c4x)
Case #1: Applying BC #1: u,(0,t) = (01 +cyt )(03) =0
(A=0) Note: vibration is changing wrt time, thus T'(t) #0 for non-trivial solution.
Since (01 + czt) #0,thusc3 =0
- U = (01 + czt)(c4x)




Applying BC #2, we get u, (L, t) = (c1 + cyt )(C4L) =0
Since (01 + czt) #0,L+#0,thus ¢, =0

=~ uq(x,t) = 0 (No solution)

uy = X, ()T, (¢)
= (cs5 cosh(aat) + cg sinh(aat))(c;cosh(ax) + cgsinh(ax))

Applying BC #1: u,(0,t) = (05 cosh(aat) + cgsinh(aat) )(07) =0

Case #2: Since (c5cosh(aat) + cgsinh(aat) ) #0,thusc; =0
(A=—0o?)
a>0 - Uy (x,t) = (c5 cosh(aat) + cg4 sinh(aat))(cgsinh(ax))
Applying BC #2: u, (L, t) = (cs5 cosh(aat) + cg sinh(aat))(cgsinh(al)) = 0
Since (c5 cosh(aat) + cg sinh(aat)) # 0,sinh(aL) # 0 for aL > 0,
thuscg =0
=~ Uy (x,t) = 0 (No solution)
~ug = X3(x)T3(0)
= (cy cos(aat) + ¢y sin(aat))(cyycos(ax) + cypsin(ax) )
Applying BC #1: u3(0,t) = (cy cos(aat) + c1o sin(aat))(c;1) =0
Since (cq cos(aat) + c¢1o sin(aat)) # 0,thusc;; =0
Case #3: - u3 = (cg cos(aat) + ¢y sin(aat))(ci,sin(ax) )
A=+ a?)
a>0 Applying BC #2: u3(L, t) = (cocos(aat) + c;osin(aat) ) (clzsin(aL) )=0

Since (cq cos(aat) + ¢y sin(aat)) # 0 and ¢y, # 0 when sin(al) =0 for
al = nm, where o = nL—n, n=1273..

There are infinite solutions in Case #3:

U3y = (Cg,n cos (? t) + ¢1op Sin (? t)) (clz,nsin(nL—n x) )
,Wheren =1,2,3,...

In summary, the eigenvalue and eigenfunction of the PDE for each case are listed below:

Case PDE solution Eigenvalue and eigenfunction of PDE
No solution

Case #1: u (e t) =0 hence no eigenvalue and no

(\=0) R eigenfunction
Case #2: No solution
(A= —0a?) _ hence no eigenvalue and no

a>0 uz(%,t) =0 eigenfunction

. 2 nm 2
Case #3: Eigenvalue, A=+ a,* = (T)
(A=+a?) | Usn = (ngn cos (nLﬂ t) + Eigenfunction us ,,
nma
a>0 C10n SiN (nLﬂ t)) (clz’nsin(nL—ﬂ x) ) = (09,n cos (T t) +

. nma . nm
Cion Sin(——t ClZ,nSln(T X)




Step 4: Superposition Principle to find Ugprqi (%, ) = X1 Ty + X,T, + X375

nna )

[00]
Utotal (x, t) Z C9 n COS

n:

+ cy9n SiN (? t)) (clz,nsin(nL—n X) )

solution from Case 3

where there are 3 remaining unknowns (i.e. ¢g 5, €10, & C12.7).

By expanding it, we can reduce the unknowns into 2 (i.e. A3 ,,, B3 »,), as shown in displacement solution.

- nra . onm . nma . onm
Utoral (X, y) = Z A3y cos (T t) (sm(T X) ) + B3,n5m(T t) (sm(T X) )
n=1

Differentiate the displacement solution wrt t, then we obtain the velocity solution.

o)

_aug;, 2 = i (—A3’n nLﬂsin(? t) (sin(nL—nx) ) ) + Z (B3,nnLﬂcos(? t) (sin(nL—nx) ))

n=1 n=1

Step 5: Continue to apply the remaining IC & Fourier series expansion.

IC#lzu(x, O) =f(x) for0<x<L

Urorar(¥,0) = Tiy (Agm (sin(Fx) ) ) = F(0)

Recall Half-range Fourier Sine Series Expansion:

f(x) = Xn=1(by sinnwx)
where by, = %forf(x) sinnwx dx

Precaution: L in the formula indicates the half period, i.e. L = g = g . Do not mix it with the length
of the 1D string, which is using the same symbol, L as well.

Note that for (i) Half-range expansion: Finite interval, T = half period, L
(ii) Full-range expansion: Finite interval, t = full period, 2L

We notice A3, = b, = %forf(x) sinnwx dx ,

wherew = - &

=11

From 0 < x < L, Tt = length, L. For half-range expansion, Tt = half period, L. Thus, in this
case it happens to have finite interval, T = half period, L = length, Lin this special case.

Precaution: Note that it would be different for full-range expansion case.



- A3y = %fOLf(x) sinn%xdx

Step 5: Continue to apply the remaining IC & Fourier series expansion.

IC #Z:ut(x, O) =g(x) forO0<x <L

2D — s (Bon ™2 (sinCE0) ) ) = 90

Recall Half-range Fourier Sine Series Expansion:

g(x) = Y¥3 (b, sinnwx)
where by, = %forg(x) sinnwx dx

: 2 )
We notice Bs ,, ? =b, = zforf(x) sinnwx dx,

Vs
where w = T

From 0 < x < L, T = length, L. For half-range expansion, T = half period, L. Thus, in this
case it happens to have finite interval, T = half period, L = length, L in this special case.

nmwa 2 L . s
= Byp—— = Zfo g(x) sinn_xdx

2 L . s
- B3, = Efo g(x) sinn_xdx

Thus, we have solved all the unknowns and obtain the particular PDE solution:

= nma . onm . nma . nm
S Upora (X 1) = Z As cos (T t) (sm(T x) ) + Bglnsm(T t) (szn(T x) )
n=1

N 2 (* . T nma nm
Ugorar (X, ) = Z Zf f(x) sin nox dx cos (T t) (sm(T x) )
0

n=1

N ZfL()' L _nﬂat(_nn )
nra g(x sanx x sin( I ) sm(L X)

Example: Let the initial displacement, f(x) = x(L —x) , initial velocity, g(x) = 0, dimension,
length, L = 1, PDE coefficient, a = 1 for the previous problem.

) ZJ‘L T B—ZL()'nd
3,n—L0f(x)sanx X g'n_mraogx sinnrxdx




—Zfl 1-x)sinn—xd
=1 0x( x)smnlx x

1 1
=2U xsinnnxdx—f xzsinnnxdx]
0

0

[Sinnn — NWCoSNnT

n2m?

2
" (1)

1 T
f (0)sinn—xdx
0 L

n3m3
_ [ 2nmsinnm + 4cosnm — 4]

2nmsinnm + (2 — n?n?)cosnm — 2]

n3m3

- nma oonm . nma .onm
S Upora (X 1) = Z Az, cos (T t) (sm(T X) ) + B3lnsm(T t) (sm(T X) )
n=1

2nnsinnn+4cosnm—4

=y - s cos(nmt)(sin(nmx) )

We can use the PDE solution to estimate the vibration at any point on the string. Example: The
vibration results at 100 x 500 points of the (x, t) locations for a duration of 5s have been plotted
below:

3D plot of uspeqr (x, t) Wrt x- & t- axes ‘ 2D plot




Fromt=0tot = 0.992

t=0

t=0.1904
t=0.3908 | |
t=0.4910
t=0.5912
t=0.7916
t=0.9920 | |

U

X 1.1523
Y 0.272727
Z -0.175139

-0.3

-Due to boundary conditions on both sides of the 1D x
string and the initial displacement of the rod, the
vertical displacement of the string changes over time.

T
t=1.002
t=1.1924

For example, Usp¢q:(0.2727,1.1523) = —0.1751.
Note that 20 terms are used for plotting the graphs.
For higher accuracy, more terms & more grid can be
included but computational time will be increased.

t=1.3928 |
t=1.4930
t=1.5932
t=1.7936
t=1.9940 | |

u(x,t)

Try to verify the answer:
Uporar(0.2727,1.1523)

2nmsinnm+4cosnn—4

. 03 . . . . . . . . .
20 n3n3 0 01 02 03 04 05 06 07 08 09 1

" cos(1.1523nm) (sin(0.2727nm) )

~
=~

Note that the transverse vibration solution, usy¢q; (%, t) due to the initial displacement does not
diminish over time, this is because the original PDE equation is excluding the damping component for
an ideal case with no energy loss.

. . . 9?2 92
Wave equation without damping component: a? ﬁ = a—tl;

To represent the actual system with friction/ energy loss, damping component, k can be included as
such
o%u _ 0%

. . . 207U _ u
Wave equation with damping component: a 2 otz +k T

Same separation of variable method can be used to solve the damped case, thus the steps are
excluded for brevity.



