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ENGINEERING APPLICATIONS OF ODE 
WEEK 5: ENGINEERING APPLICATIONS OF ODE 

5.1 MECHANICAL MASS-SPRING-DAMPER MOTIONAL SYSTEM 

Example 5.1: 

A mechanical system is made up three elements, the mass m which is the moving object, the spring 

constant k which gives the elasticity, and the damping constant c which provides damping to the 

system and so dampens the movement. This is usually presented schematically as in Figure 5.1. 

 

Figure 5.1. A simple mass-spring-damper system 

The equation that governs the motion (displacement) 𝑥(𝑡) due to a force 𝐹(𝑡) is given as a 2nd order 

ODE: 𝑚
𝑑2𝑥

𝑑𝑡2 + 𝑐
𝑑𝑥

𝑑𝑡
+ 𝑘𝑥 = 𝐹. This system is frequently used to represent vibrational or oscillatory 

motions. Let us consider an electric motor (Figure 5.1) with mass 𝑚 = 10 kg. It is mounted to the 

ground via rubber mount with spring constant 𝑘 = 80 N/m, damping constant 𝑐 = 40 Ns/m. Due to 

uneven shaft, as the shaft rotates, the unbalanced rotation creates a cyclical force 𝐹(𝑡) = 20 cos 5𝑡 N 

that causes the motor to vibrate, as described by the vertical displacement 𝑥(𝑡). Find 𝑥(𝑡). 

 

Solution: 

The equation to be solved is: 10
𝑑2𝑥

𝑑𝑡2 + 40
𝑑𝑥

𝑑𝑡
+ 80𝑥 = 20 cos 5𝑡 

Since it is a non-homogeneous ODE, it has to be solved by: 

Step 1: Homogeneous part  to get complementary solution 𝑥𝑐 

Step 2: Non-homogeneous part  to get particular solution 𝑥𝑝 

Step 3: Use initial condition(s) to find remaining unknowns in 𝑥 = 𝑥𝑐 + 𝑥𝑝 
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Step 1: Solve homogeneous part, 10
𝑑2𝑥

𝑑𝑡2 + 40
𝑑𝑥

𝑑𝑡
+ 80𝑥 = 0 

The characteristic equation: 

10𝑚2 + 40𝑚 + 80 = 0                                                  𝑏2 − 4𝑎𝑐 = 402 − 4(10)(80) = −1600 < 0 

We expect a pair of complex conjugate characteristic roots: 

𝑚1,2 =
−40±√402−4(10)(80)

2(10)
= −2 ± 2𝑖  

(Note that m refers to characteristic root here, not mass as in the question) 

 

𝑥1 = 𝑐1𝑒(−2+2𝑖)𝑡,            𝑥2 = 𝑐2𝑒(−2−2𝑖)𝑡                        𝑥𝑐 = 𝑐1𝑒(−2+2𝑖)𝑡 + 𝑐2𝑒(−2−2𝑖)𝑡 

 

However, because it is not convenient to work with complex number terms, by the Euler formula: 

𝑒±𝑖(2𝑡) = cos(2𝑡) + 𝑖 sin(2𝑡)  

𝑥𝑐 = 𝑒−2𝑡(𝑐1𝑒𝑖(2𝑡) + 𝑐2𝑒−𝑖(2𝑡))  

 

Eventually, the complementary solution can simply be re-stated as: 

𝑥𝑐 = 𝑒−2𝑡(𝐴 cos 2𝑡 + 𝐵 sin 2𝑡)  

 

Step 2: Solve non-homogeneous part, 10
𝑑2𝑥

𝑑𝑡2 + 40
𝑑𝑥

𝑑𝑡
+ 80𝑥 = 20 cos 5𝑡 

Method of undetermined coefficients can be used: 

𝑅𝐻𝑆 = 200 cos 5𝑡                        assume 𝑥𝑝 = 𝐶 cos 5𝑡 + 𝐷 sin 5𝑡 

Differentiate: 𝑥̇𝑝 = −5𝐶 sin 5𝑡 + 5𝐷 cos 5𝑡 

                             𝑥̈𝑝 = −25𝐶 cos 5𝑡 − 25𝐷 sin 5𝑡 

 

The concept of solution applies. Substitute 𝑥𝑝 and its derivatives back to the ODE for LHS = RHS: 

10(−25𝐶 cos 5𝑡 − 25𝐷 sin 5𝑡) + 40(−5𝐶 sin 5𝑡 + 5𝐷 cos 5𝑡) + 80(𝐶 cos 5𝑡 + 𝐷 sin 5𝑡) = 20 cos 5𝑡  

−250𝐶 cos 5𝑡 − 250𝐷 sin 5𝑡 − 200𝐶 sin 5𝑡 + 200𝐷 cos 5𝑡 + 80𝐶 cos 5𝑡 + 80𝐷 sin 5𝑡 = 20 cos 5𝑡  

(−250𝐶 + 200𝐷 + 80𝐶) cos 5𝑡 + (−250𝐷 − 200𝐶 + 80𝐷) sin 5𝑡 = 20 cos 5𝑡    (+0 sin 5𝑡)  

(−170𝐶 + 200𝐷) cos 5𝑡 + (−170𝐷 − 200𝐶) sin 5𝑡 = 20 cos 5𝑡    (+0 sin 5𝑡) 

 

By comparison, we can determine the coefficients C, D: 

−170𝐶 + 200𝐷 = 20  

−200𝐶 − 170𝐷 = 0                                     Solve to get: 𝐶 = −
34

689
= −0.04935,            𝐷 =

40

689
= 0.05806 
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Therefore, 𝑥 = 𝑥𝑐 + 𝑥𝑝 

𝑥(𝑡) = 𝑒−2𝑡(𝐴 cos 2𝑡 + 𝐵 sin 2𝑡) − 0.04935 cos 5𝑡 + 0.05806 sin 5𝑡  

 

 

Note: For this question, there is no information regarding the initial conditions, such as 𝑥(0) and 𝑥̇(0), 

so we will leave the solution as it is (which still contains two unknown constants, A & B, to be 

determined – study Example 5.2 for this kind of further steps). Because A & B have not been 

determined in this example (Example 5.1), the solution 𝑥(𝑡) cannot be plotted to visualize the response 

behavior (again, study Example 5.2 which does solve all unknowns). However, the current expression: 

𝑥(𝑡) = 𝑒−2𝑡(𝐴 cos 2𝑡 + 𝐵 sin 2𝑡) − 0.04935 cos 5𝑡 + 0.05806 sin 5𝑡  

still has some usefulness. From the solution, we observe that the complementary part 𝑥𝑐 is bounded by 

𝑒−2𝑡 which shows that the displacement response due to this part of the solution will diminish with 

time. This part (or component) of the response is called transient part. With sufficient time, the 

transient part will become negligible, and the subsequent displacement response will only be due to the 

particular part 𝑥𝑝 = −0.04935 cos 5𝑡 + 0.05806 sin 5𝑡. Therefore, for this type of analysis, sometimes 

the interest is only on finding 𝑥𝑝 . Finally, it is worth mentioning that 𝑥𝑝 = −0.04935 cos 5𝑡 +

0.05806 sin 5𝑡 can be easily re-stated, using trigonometry relationship, as: 𝑥𝑝 = 0.07619 sin(5𝑡 −

0.7045 rad). Since 𝑥𝑝 is the continuous, steady-state component of the response, we will know that 

the amplitude of this vibration response of the electric motor is 0.07619 m (for subsequent analysis or 

modification). 
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5.2 ELECTRICAL RESISTOR-INDUCTOR-CAPACITOR (RLC) CIRCUIT 

Example 5.2: 

An RLC circuit is provided as shown in the Figure 5.2 where there are: an inductor of  𝐿 = 50 Henrys (H), 

a resistor of 𝑅 = 5 ohms (Ω) and a capacitor of 𝐶 = 8 Farads (F). At 𝑡 = 0, the switch is closed. Given 

the 2nd order ODE for the system is 𝐿
𝑑2𝑞(𝑡)

𝑑𝑡2 + 𝑅
𝑑𝑞(𝑡)

𝑑𝑡
+

1

𝐶
𝑞(𝑡) = 𝐸(𝑡). 

 

Figure 5.2. Basic RLC circuit. 

Find the charge 𝑞(𝑡) and current 𝑖(𝑡) at any time 𝑡 > 0  if the voltage is supplied by a DC battery, i.e. 

𝐸 = 40 volts (V). 

 

Solution: 

Step 1: Homogeneous Part 

i.e. 50
𝑑2𝑞(𝑡)

𝑑𝑡2 + 5
𝑑𝑞(𝑡)

𝑑𝑡
+

1

8
𝑞(𝑡) = 0 

Step 2: Non-homogeneous Part 

i.e. 50
𝑑2𝑞(𝑡)

𝑑𝑡2 + 5
𝑑𝑞(𝑡)

𝑑𝑡
+

1

8
𝑞(𝑡) = 40 

Characteristic equation: 

50𝑚2 + 5𝑚 +
1

8
= 0  

400𝑚2 + 40𝑚 + 1 = 0  

(20𝑚 + 1)2 = 0  

𝑚1 =  𝑚2 = −0.05 

 

Comment: Repeated real root 

 

Complementary solution: 

𝑞𝑐 = 𝑐1𝑒−0.05𝑡 + 𝑐2𝑡𝑒−0.05𝑡 

Comment:  

(i) 𝑞𝑐,1 = 𝑒−0.05𝑡 and 𝑞𝑐,2 = 𝑒−0.05𝑡  are 
linearly dependent. 

(ii) Treatment is done so that 𝑞𝑐,1 =

𝑒−0.05𝑡 and 𝑞𝑐,2 = 𝑡𝑒−0.05𝑡  are 

The method of undetermined coefficient: 

RHS : 𝑟(𝑥) = 𝑒𝛼𝑥𝑃𝑛(𝑥) = 40                     

where  𝛼 = 0, 𝑛 = 0 

Possible particular solution:  

𝑞𝑝 = 𝑒(0)𝑥𝑄0(𝑥) = 𝐴 

 

Since  𝛼 ≠ 𝑚1 & 𝑚2, treatment is not needed. 

 

Comment:  

(i) 𝑞𝑝 = 𝐴 and 𝑞𝑐 = 𝑐1𝑒−0.05𝑡 + 𝑐2𝑡𝑒−0.05𝑡 are linearly 

independent 

 

Solve the coefficient for the particular solution: 

𝑞𝑝 = 𝐴 
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linearly independent. 
 

 

Differentiate it, we get:      

𝑑𝑞𝑝

𝑑𝑡
= 0  

𝑑2𝑞𝑝

𝑑𝑡2 = 0  

Substitute to the ODE equation: 50
𝑑2𝑞(𝑡)

𝑑𝑡2 + 5
𝑑𝑞(𝑡)

𝑑𝑡
+

1

8
𝑞(𝑡) = 40    

>> 50(0) + 5(0) +
1

8
𝐴 = 40 

>>𝐴 = 320  

The actual particular solution: 
𝑞𝑝 = 320 

 

  The complete/ general solution to 50
𝑑2𝑞(𝑡)

𝑑𝑡2 + 5
𝑑𝑞(𝑡)

𝑑𝑡
+

1

8
𝑞(𝑡) = 40 is 

(i) Charge solution, 

 𝑞𝑡𝑜𝑡𝑎𝑙 = 𝑞𝑐 + 𝑞𝑝 = 𝑐1𝑒−0.05𝑡 + 𝑐2𝑡𝑒−0.05𝑡 + 320  

 
(ii) Differentiate it, we obtain the current solution 

𝑖𝑡𝑜𝑡𝑎𝑙 =
𝑑𝑞𝑡𝑜𝑡𝑎𝑙

𝑑𝑡
= 𝑐2𝑒−0.05𝑡 − 0.05𝑒−0.05𝑡(𝑐1 + 𝑐2𝑡)  

 

Step 3: Solution to initial value problem 

Note:  

The general solution is not yet the actual solution (final solution) to the problem because it has 
infinite 𝑐1, 𝑐2  that can satisfy the problem. Recall that in the initial value problem, we can further 
solve the constant  𝑐1, 𝑐2 in the system if the initial condition of the problem is known in advance.  
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Hint for the initial condition:  

’At 𝑡 = 0, the switch is closed’ 

This shows that charge and current flows only when 𝑡 > 0. Thus, the initial conditions are 

𝑞(0) = 0, 𝑖(0) =
𝑑𝑞

𝑑𝑡 𝑡=0
= 0 

 

Apply the initial conditions to the general solution, we obtain: 

𝑞𝑡𝑜𝑡𝑎𝑙 = 𝑞𝑐 + 𝑞𝑝 = 𝑐1𝑒−0.05𝑡 + 𝑐2𝑡𝑒−0.05𝑡 + 320 

>> 𝑞(0) = 𝑐1𝑒−0.05(0) + 𝑐2(0)𝑒−0.05(0) + 320 = 0  

>> 𝑐1 = −320 

 

𝑖𝑡𝑜𝑡𝑎𝑙 = 𝑐2𝑒−0.05𝑡 − 0.05𝑒−0.05𝑡(𝑐1 + 𝑐2𝑡)  

>> 𝑖𝑡𝑜𝑡𝑎𝑙 = 𝑐2𝑒−0.05(0) − 0.05𝑒−0.05(0)(𝑐1 + 𝑐2(0)) = 0 

>> 𝑐2 − 0.05(𝑐1) = 0 

>> 𝑐2 = 0.05(𝑐1) = 0.05(−320) = −16 

 

The actual charge solution  to the RLC circuit problem: 

𝑞𝑡𝑜𝑡𝑎𝑙 = −320𝑒−0.05𝑡 − 16𝑡𝑒−0.05𝑡 + 320 
 

The actual current solution to the RLC circuit problem: 

𝑖𝑡𝑜𝑡𝑎𝑙 = −16𝑒−0.05𝑡 − 0.05𝑒−0.05𝑡(−320 − 16𝑡) 

 𝑖𝑡𝑜𝑡𝑎𝑙 = 𝑒−0.05𝑡(16𝑡) 

 

Note: Solutions obtained by solving the problem analytically are known as analytical solutions. Once 

the solution expressions are known, we can plot the charge and current against time (for this RLC circuit 

problem with 𝐿 = 50 H, a resistor of 𝑅 = 5 Ω and a capacitor of 𝐶 = 8 F) as below to visualize the 

response behavior. The intention of this example is to encourage student to link the mathematical result 

to the actual problem instead of calculating it for nothing. However, subsequent data analysis on 

specific engineering problem requires certain knowledge on the subject and hence it is out of the 

scope in this study. 
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Hint: Relate this to the charging scenario (of battery, or capacitor in this case). 

Further data analysis – Think: 

(1) Identify the transient and steady state region in the graph. Why it is important to identify them?   

Ans: Transient region happens within around 0 − 150𝑠; while steady state region occurs after that. 

This relationship is important to the RLC circuit problem such as charging battery, where we can 

estimate how much time is needed to fully charge the battery. Moreover, it shows that the current 

is reduced to zero once it is fully charged. 

 

(2) What are the relationships between complementary solution & particular solution with these 

transient and steady state region?  

Ans: We know that the total solution is a combination of the complementary solution & particular 

solution. The complementary solution contributes more within the transient region and its effect 

diminishes within the steady state region; while the particular solution contributes significantly 

within the steady state region. 

 

(3) Why does the charge behave as such: increase over a time initially and at time approximately 150s, 

the charge remains constant afterward? Why does the current behave as such: increase over a time 

initially and decrease after it reaches its maximum? The charge decreases to zero at time 

approximately 150s and remains constant afterward. 

                Ans: To understand the changes, we need to check the equation, 𝑞𝑡𝑜𝑡𝑎𝑙 = −320𝑒−0.05𝑡 −

16𝑡𝑒−0.05𝑡 + 320, where complementary solution of charge, 𝑞𝑐 = −320𝑒−0.05𝑡 − 16𝑡𝑒−0.05𝑡 and 

its particular solution, 𝑞𝑝 = 320.Since the complementary solution consists of the exponential 

function, i.e. 𝑒−0.05𝑡, as the time increase, this function will approach zero and thus diminish. At 

the same time, the particular solution remains all the time. Hence, 𝑞𝑡𝑜𝑡𝑎𝑙 = −320𝑒−0.05𝑡 −

16𝑡𝑒−0.05𝑡 + 320 increase over a time initially and at time approximately 150s, the charge 

remains constant afterward. The current is the rate of change of the charge, i.e. 𝑖𝑡𝑜𝑡𝑎𝑙 =
𝑑𝑞𝑡𝑜𝑡𝑎𝑙

𝑑𝑡
=

𝑒−0.05𝑡(16𝑡). Since it consists of the exponential function, it illustrates that the charging rate will 

be higher initially and reduce to zero afterwards, as this function will approach to zero as the time 

increase. 

Think: In case you want to reduce the charging time or increase the charging capacity, what should you 

do? 
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5.3 SOLUTION MIXING AND CONCENTRATION 

Example 5.3: 

A tank contains 40 liters (L) of a solution composed of 90 percent water and 10 percent alcohol. A 

second solution containing 50 percent water and 50 percent alcohol is added to the tank at a rate of 4 

L/minute. As the second solution being added, the tank is being drained at the rate of 4 L/minute, as 

shown in Figure 5.3. Assuming the solution in the tank is stirred constantly, how much alcohol is in the 

tank after t minutes, how much alcohol is in the tank after 10 minutes? 

 

Figure 5.3.  Modelling of mixture. 

 

Solution: 

Let y(t) = amount of  alcohol (in liters, L) in the tank at any time t (in minutes) 

We can form an equation that relates y by considering the rate of change of alcohol in tank, 
𝑑𝑦

𝑑𝑡
, which 

can be stated as below: 

𝑑𝑦

𝑑𝑡
=  rate of alcohol entering −  rate of alcohol draining 

 

rate of alcohol entering = 4 𝐿/𝑚𝑖𝑛𝑢𝑡𝑒 ×  50% = 2 𝐿/𝑚𝑖𝑛𝑢𝑡𝑒  

rate of alcohol draining = 4 𝐿/𝑚𝑖𝑛𝑢𝑡𝑒 × alcohol percentage in tank  

But what is the alcohol percentage in tank (at any time)? This can be obtained as the amount y divided 

by the 40 L solution in the tank. So: 

rate of alcohol draining = 4 𝐿/𝑚𝑖𝑛𝑢𝑡𝑒 ×
𝑦

40
  

 

Therefore, an ODE (1st order ODE) that models this mixing scenario is established: 

𝑑𝑦

𝑑𝑡
=  2 − 4 (

y

40
)  

𝑦′ +
1

10
𝑦 =  2. 
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Let’s solve the 1st order ODE by treating it as an exact differential equation: 𝑦′ + 𝑝(𝑡)𝑦 = 𝑞(𝑡). This 

method requires finding of integrating factor, 𝑒∫ 𝑝(𝑡)𝑑𝑡 

For this ODE, 𝑝(𝑡) =
1

10
 

Thus, the integrating factor is 

𝑢(𝑡) = 𝑒∫ 𝑝(𝑡)𝑑𝑡 = 𝑒∫
1

10
𝑑𝑡 = 𝑒

𝑡
10⁄  

Multiply the integrating factor, 

𝑒
𝑡

10⁄ (𝑦′) + 𝑒
𝑡

10⁄ (
1

10
𝑦) =  2𝑒

𝑡
10⁄   

LHS is exact format, 

𝑑

𝑑𝑡
[𝑦. 𝑒

𝑡
10⁄ ] =  2𝑒

𝑡
10⁄   

Integrating both side with respect to t, 

∫
𝑑

𝑑𝑡
[𝑦. 𝑒

𝑡
10⁄ ] 𝑑𝑡 = ∫ 2𝑒

𝑡
10⁄ 𝑑𝑡   

𝑦. 𝑒
𝑡

10⁄ = 20𝑒
𝑡

10⁄ + 𝐶 

and the general solution is 

𝑦 = 20 + 𝐶𝑒
−𝑡

10⁄  

where C are arbitrary constants. 

 

Finally, substitute initial condition to find the unknown constant C: ’A tank contains 40 liters (L) of a 

solution composed of 90 percent water and 10 percent alcohol’ Thus, initially (t = 0), the amount of 

alcohol in the tank is 𝑦 = 40𝐿 × 10% = 4𝐿, or simply 𝑦(0) = 4. Substitute: 

4 = 20 + 𝐶𝑒
−0

10⁄              ⇒                  𝐶 =  −16 

The complete solution is 

𝑦 = 20 − 16𝑒
−𝑡

10⁄  

 

Finally, when t = 10 minutes, the amount of alcohol in the tank (in liters, L) is: 

𝑦(10) = 20 − 16𝑒−10
10⁄ = 20 − 16𝑒−1  ≈ 14.114 

 

Note: There are multiple ways to solve this ODE: 𝑦′ +
1

10
𝑦 =  2 is a non-homogeneous constant 

coefficients ODE, so it can also be solved by 𝑦𝑐 = 𝐶𝑒𝑚𝑡, while 𝑦𝑝 = 𝐴 as from the method of 

undetermined coefficients. Then, 𝑦 = 𝑦𝑐 + 𝑦𝑝. Regardless of method, the final solution will be the 

same. 
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5.4 OTHER SCENARIOS 

Example 5.4: Radioactive decay and radiocarbon dating 

Radioactive decay is governed by the equation that belongs to 1st order ODE: 
𝑑𝑦

𝑑𝑡
= 𝑘𝑦, in which y 

represents the amount of radioactive material, k is a constant of proportionality that depends on the 

material. An application of this equation is in estimating the age of discovered fossils, known as 

radiocarbon dating, that relates to the decay of radioactive carbon-14. In living organisms, the ratio of 

carbon-14 to ordinary carbon-12 (representing the amount of radioactive material) is constant. When 

an organism dies, absorption of carbon-14 stops, so the amount (the carbon-14 to carbon-12 ratio) 

reduces due to radioactive decay. It is also known that the half-life of carbon-14 is 5715 years, which is 

the time taken for certain amount of carbon-14 to reduce to half (50 %) of the original amount. 

Let us consider a scenario where a discovered fossil is measured to have carbon-14 to carbon-12 ratio of 

52.5 %. With the ODE and half-life information stated above, what is the age (t, in years) of this fossil? 

 

Solution: 

We first solve the ODE to obtain a general solution of 𝑦(𝑡): 

𝑑𝑦

𝑑𝑡
= 𝑘𝑦                         

𝑑𝑦

𝑑𝑡
− 𝑘𝑦 = 0 

There are multiple ways of solving this particular 1st order ODE. For instance, we can separate the 

variables y & t and integrate both sides of the equation to get the solution quickly. Here, let us try the 

method of assuming 𝑦(𝑡) = 𝐶𝑒𝑚𝑡  to demonstrate this method (the same as solving 2nd order 

homogeneous linear ODE with constant coefficients): 

Differentiate: 𝑦(𝑡) = 𝐶𝑒𝑚𝑡            𝑦′ = 𝐶𝑚𝑒𝑚𝑡 

Substitute: 𝐶𝑚𝑒𝑚𝑡 − 𝑘𝐶𝑒𝑚𝑡 = 0 

                       𝐶𝑒𝑚𝑡(𝑚 − 𝑘) = 0 

Since 𝐶𝑒𝑚𝑡 = 𝑦(𝑡) ≠ 0, we obtain the characteristic equation (𝑚 − 𝑘) = 0, so 𝑚 = 𝑘. 

Therefore, the solution: 𝑦(𝑡) = 𝐶𝑒𝑘𝑡 

It can be shown that the unknown constant is the initial amount of radioactive material 𝑦0 (𝑡 = 0): 

Since 𝑦 = 𝑦0 when 𝑡 = 0, substitute back to the solution: 

𝑦0 = 𝐶𝑒𝑘0                         𝐶 = 𝑦0 

 

The solution: 𝑦(𝑡) = 𝑦0𝑒𝑘𝑡 
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To answer this question specifically, we first use the half-life information: 𝑦 = 0.5𝑦0 when 𝑡 = 5715: 

0.5𝑦0 = 𝑦0𝑒𝑘(5715) --- eqn (1)                       0.5 = 𝑒𝑘(5715) 

𝑘 =
ln 0.5

5715
= −0.0001213  

So: 𝑦(𝑡) = 𝑦0𝑒−0.0001213𝑡 

 

Since it is measured that the fossil has carbon-14 to carbon-12 ratio of 52.5 %, 𝑦 = 0.525𝑦0 for this 

fossil at the age of t: 

0.525𝑦0 = 𝑦0𝑒𝑘𝑡 = 𝑦0𝑒−0.0001213𝑡 --- eqn (2)                       0.525 = 𝑒−0.0001213𝑡 

Therefore: 

𝑡 =
ln 0.525

−0.0001213
= 5312 years (approximately 5300 years) 

 

Note: For this specific question, it is not needed to know the complete solution (in particular, to 

determine 𝐶 = 𝑦0). This is because the time t for 𝑦 = 0.525𝑦0  can be found with the relative 

information t for 𝑦 = 0.5𝑦0 known – the half-life of radioactive carbon-14.In fact, if we take eqn (2) / 

eqn (1), the time t can be found even without finding k. However, solving the ODE to get the expression 

(solution) 𝑦(𝑡) = 𝐶𝑒𝑘𝑡 is still needed for the subsequent calculation. 
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Example 5.5: Newton’s law of cooling 

According to thermal conduction principle, the rate of change (with respect to time t) of the 

temperature T of an object is proportional to the difference between T and the temperature of the 

surrounding medium Tm. In mathematics, this is conveniently stated as: 

𝑑𝑇

𝑑𝑡
= 𝑘(𝑇 − 𝑇𝑚) 

which is a 1st order ODE. Suppose that in winter the daytime indoor temperature in a certain office 

building is maintained at 25 deg Celsius. The heating is turned off at 10 pm (t = 0) and turned on again at 

6am the following day (t = 8 hours, hr). At 2am (t = 4 hr), the indoor temperature was measured to be 20 

deg Celsius. The surrounding temperature has been more or less constant at 10 deg Celsius. So, when 

the heating is turned on again at 6am the following day, what is the indoor temperature of the 

building? 

 

Solution: 

We first solve the ODE to obtain a general solution of 𝑇(𝑡): 

Some information extracted: 

𝑇𝑚 = 10,            𝑇(𝑡 = 0) = 25,            𝑇(𝑡 = 4) = 20 

The 1st order ODE: 
𝑑𝑇

𝑑𝑡
= 𝑘(𝑇 − 10)  

There are several ways of solving this particular 1st order ODE. Unlike Example 5.4, this time we try the 

method of separating the variables to get separable differential equation instead, and integrate: 

 

𝑑𝑇

𝑇−10
= 𝑘𝑑𝑡                        ∫

𝑑𝑇

𝑇−10
= ∫ 𝑘𝑑𝑡                        ln|𝑇 − 10| = 𝑘𝑡 + 𝑐 

Rearrange: 

𝑇 = 𝑒𝑘𝑡+𝑐 + 10                        𝑇 = 𝐴𝑒𝑘𝑡 + 10            Note: 𝐴 = 𝑒𝑐 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

Substitute 𝑇(𝑡 = 0) = 25: 

25 = 𝐴𝑒𝑘(0) + 10                        𝐴 = 15 

Substitute 𝑇(𝑡 = 4) = 20: 

20 = 15𝑒𝑘(4) + 10                        𝑘 = (
1

4
) ln (

20−10

15
) = −0.1014 
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So, the complete solution: 𝑇 = 15𝑒−0.1014𝑡 + 10 

 

Once the complete solution is found, the answer to the question is straight-forward: 

At 6am the following day (t = 8 hr), 

𝑇 = 15𝑒−0.1014(8) + 10 = 16.665 deg Celsius 

 

 

 

 

Summary note: from the various examples, it can be seen that quite a number of engineering or 

physical scenarios are modelled by ODE, whether 1st order or 2nd order. Therefore, solving differential 

equation is very important in understanding the behavior of the response of a system that corresponds 

to an input / excitation. 

The mathematic modelling (deriving the equation) of a system involves understanding of specific law 

and theory, thus it is not within the scope of this study. However, students are expected to know how to 

solve the given 1st order & 2nd order ODE for various engineering applications. 

Details of some mathematic modelling and some further examples are available in Appendices 5.1 – 5.7. 

This includes: 

(i) Mathematic modelling of a liquid system  (1st order ODE) (Appendix 5.1) 

(ii) Mathematic modelling of an RLC electrical circuit (2nd order ODE) (Appendix 5.2) 

(iii) Mathematic modelling of an RLC electrical circuit under electromotive force excitation (2nd 

order ODE) (Appendix 5.3) 

(iv) Mathematic modelling of a vibrating spring without damping (2nd order ODE) (Appendix 5.4) 

(v) Mathematic modelling of a vibrating spring with damping (2nd order ODE) (Appendix 5.5) 

(vi) Mathematic modelling of a damped vibration system under forced vibration (2nd order ODE) 

(Appendix 5.6) 

(vii) Analogue between vibrational system and electrical circuit (Appendix 5.7) 

 

 


