LAPLACE TRANSFORM SOLUTIONS FOR
DIFFERENTIAL EQUATIONS

WEEK 9: LAPLACE TRANSFORM SOLUTIONS FOR DIFFERENTIAL EQUATIONS

9.1 SOLVING LINEAR ODES

Having mastered the mechanics of forward and inverse Laplace transform, this Chapter applies such
skills to solve linear differential equations.

The Laplace transform of a linear differential equation (in t-domain) with constant coefficient yields an
algebraic equation, Y(s) in s-domain, which can be solved easily. Once solved, the solution is s-domain
can be easily reconverted to t-domain to obtain the final solution.

Initial condition(s) is(are) required to solve differential equations using Laplace transform.
Example g9.1: Solving first-order initial value problem

Use the Laplace transform to solve the initial-value problem
2 43y =13sin2t, y(0) =6
Solution:
d .
L {d—f} + 3L{y} = 13L{sin 2t} (1)

From Table of Laplace Transform,

2
s2+4

L{%} =sY(s) —y(0) =sY(s)—6 and  L{sin2t} =

Equation (1) becomes

sY(s) — 6 + 3Y(s) = 13( 2 )

s2+4

(s+3)Y(s)=6+13( 2 )

s2+4

6 26 652450
Y(s) = e

13 7 (543)(s244)  (s4+3)(s2+4)

Performing partial fraction:

652450 A | Bs+C

(s+3)(s2+4)  s+3 = s2+4

A=8,B=-2,C=6



—25+6
s2+4

8
Y(S) ==;:§'+

Therefore, by inverse Laplace transform,

v =7 5 -2 ) e 5

y(t) = 8e73t — 2 cos 2t + 3sin 2t

Example 9.2: Solving second-order initial value problem
Solvey"—3y'+ 2y =e™*, y(0) =1, y'(0) = 5.
Solution:

L{y"} = 3L{y'} + 2L{y} = L{e™*"}

s2Y(s) — sy(0) — y'(0) — 3[sY (s) — y(0)] + 2¥(s) = —

s+4

s2Y(s) —s — 5= 3[sY(s) — 1] + 2Y(s) = —

s+4
2 _ 1
(s*=3s+2)Y(s)=s+2+ -~

s+2 n 1 _ 5%2+65+9
s2-3s+2 ' (s2—3s+2)(s+4) (s—1)(s—2)(s+4)

Y(s) =

Performing partial fraction:

s%2+654+9 16 1 25 1 1 1

(s-1)(s=2)(s+4) = 5s-1 6 s—2 30s+4

Y(s) =

Therefore, by inverse Laplace transform,

— r-1 — _ 16 ¢ ,25 2t , 1 -at
y() =L H{Y(s)} = e +t—e+-e
Exercise
Solve the following linear differential equations using Laplace transform method
My +14y +49y =40t3e™ "t where, y'(0) = —5and y(0) =2

Ans:y(t) = e 7t(2t° + 9t + 2)

(iy" +y" —2y =4t where, y'(0) =0and y(0) =1

Ans: y(t) = —1 — 2t + 2¢t



9.2 DIFFERENTIATION OF TRANSFORMS

IfFF(s) = L{F(O} = J, f(©)e " dt, then

Fi(s) = — ] tF (et dt = L{—tf(6)

0

Proof:
F(s) = J, f(De st dt

F'(s) == (7 f()e~st dt)

d

= [ (=) f(e) dt

= [ —te™St f(t) dt

= L{-tf(t)}

In other words, if F(s) = L{f(t)}andn=1, 2, 3, ..., then

dn
LI f (O} = (D" F ()

Example 9.3:
. . w
1. Given L{sin(wt)} = o = FGs),
. , 2
Then Li=tsin(wt)} = F'(s) = — 5,

. . w?
2. Find the inverse transform of In (1 + S—z) .

Solution:

Let F(s) =1In (1 + (:—22) =1In (52+2w2) = In(s? + w?) — In(s?)

N

2s
s24+w?

F'(s) = di (In(s? + ©?) — In(s?)) =

-2 = L{-tf(®)

Taking inverse transform,

LHF©Y=~tf () = L7 (Gom — 5)

s2+w?  s2

—tf(t) = 2 cos(wt) — 2

i (1+2)} = £ =21 ~ cos(w))



9.3 INTEGRATION OF TRANSFORMS

If f(t) satisfies the assumptions of the existence theorem and the limit of f(t)/t exists when t approaches
o from the right, then

£t jF(g)dg =@

N

Proof:
[OF® ds = [2(f) e Stf () dt) ds
=[S e St ds)f(e) dt

- fooo (_ % e

:0) £(b) dt
= [Ple-stf(t)dt

“Jo ¢

- <1

t

9.4 DIRAC DELTA FUNCTION

Mechanical systems are often acted on by an external force (or electromotive force in an electrical circuit)
of large magnitude that acts only for a very short period of time. We can model such phenomena and
problems by “Dirac delta function,” and solve them very effectively by the Laplace transform.

To model situations of that type, we consider the function

1/k ifa<t<a+k
0 otherwise

felt—a) = {
As k — 0, this limit is denoted by §(t — a), that is
6(t—a)= ll(i_r)r(l)fk(t —a)

&(t — a) is called the Dirac delta function or the unit impulse function.

5() o(t—a)

-

0 0 a

The Laplace transform of the Dirac delta function is given by



L{(t—a)}=e"*
Example 9.4:
Solve y"” +y = 46(t — 2m) subjecttoy(0) = 1, y'(0) = 0.
Solution:
The Laplace transform of the differential equation is
s2Y(s) — sy(0) —y'(0) + Y(s) = 4e™2™s
(s2+1)Y(s) —s = 4e727s

4@ 24
s2+1

Y(s) =

y(t) = 4sin(t — 2m) u(t — 2m) + cost

(t)={ cost 0<t<2m
Y 4sint + cost t>2nm

Exercise

fora > 0

Solve the linear differential equation using Laplace transform method: y’' + y = §(t — 1), where

y(0)=1

Ans:y(t) = e E Dyt —1) + et

9.5 CONVOLUTION

The convolution of two functions f(t) and g(t) is denoted by the standard notation f * g and defined by

the integral (f = g)(t) = fotf(r)g(t —1)drt.

The Laplace transform is given by L{(f * g)(t)} = F(s)G(s).
Proof: F(s)G(s) = (J,” e™"f(0) dr)(J; e~ g(0) do)
= [y (y e g(0) do)f (x) d
= [ (" eStgt — D) dt)f(D) dr [t =0 +1]
= J e (fy fmg(t — vy dr) at
=L{(f *9)}

9.5.1 PROPERTIES OF CONVOLUTION



i. Commutativelaw: fxg=g=x*f

ii. Distributivelaw: f* (g1 +g2) =f*g1+f * 9>
iii. Associativelaw: (f x g) *v = f * (g * V)

iv. f¥0=0xf=0

v. f*l1=+f

9.5.2 INTEGRAL EQUATIONS

Convolution also helps in solving certain integral equations, that is, equations in which the unknown
function y(t) appears in an integral.

Example g.5: Volterra integral equation of the second kind
Solve y(t) — foty(r) sin(t — t)dt = t.

Solution:

y—y=*sint=t

Applying Laplace transform and convolution theorem, we obtain

1 1
Y& -YOgn=2
s2 1
Y(s) s2+1 52
s%+1 1 1
Y(S) = o = s_z + 5—4

3
Therefore, y(it)=t +%

9.6 SYSTEM OF ODEs

We consider a first-order linear system with constant coefficients:
Y1 =011t ay: + g1
Y2 = A21y1 + 222 + g2
If we transform it,

sY; —y1(0) = a1 Y1 +aY, + Gy



sY; —¥2(0) = a1 ¥y + a2 + G,
By collecting the Y;- and Y,-terms we have
(a11 — )Y +aY, = —y1(0) — G1(s)
az1Y1 + (az2 — 5)Y2 = —y2(0) — G2(s)

By solving this system algebraically for Y,(s), Y.(s) and taking the inverse transform we obtain the
solution y, and y, of the system.

t-space s-space
Given problem Laplace Subsidiary equation
y"(—)y =t transform > (s2—1)Y=s+1+1/s?
y(0) =1
y'(0) =1
Inverse l
Solution of given Laplace Solution of subsidiary
problem < transform equation
©<3et_Lm_, y__ 3 1 1
i L T26-1 2G+1) s?

Steps of the Laplace transform method

Example 9.6:

1. Damped Forced Vibrations
Solve the initial value problem for a damped mass—spring system acted upon by a sinusoidal force for

some time interval.

———— y = 0 (Equilibrium
l position)

Driving forcel_
| Dashpot (damping)

Mechanical system

y'+2y"+2y =7r(t), r(t) =10sin 2t if 0 <t <mwand 0ift > m;



y(0)=1,y'(0)=-5
Solution:
y" +2y"+ 2y =10sin Zt(u(t) —u(t — 7'[))

Using Laplace transform,

2
s2+4

(s2Y —s+5)+2(sY —=1)+2Y =10 (1—e7™)

2
s2+4

(s2+25s+2)Y=5s—-3+10 (1—e7™)

_ s-3 20 _ 20e”7S

T (s2425+42) | (s2425+2)(s2+44)  (s2+25+2)(s2+4)
part (a) part (b) part (b1)

Applying inverse Laplace transform,

Part (a): L1 (L) _ r-t ((S+1)—4)

S2+42s5+2 (s+1)2+1

=e !(cost —4sint)

20 _ As+B Ms+N
(s2+25+2)(s2+4)  (s+1)2+1 = s2+4

Part (b): Partial fraction expansion:

20=(As+B)(s?+4) + (Ms + N)(s? + 2s + 2)

20=(A+M)s®+ (2M + B + N)s? + (4A + 2M + 2N)s + (4B + 2N)

Equating the coefficients of each power of s on both sides gives the four equations:
A+ M =0; 2M +B+ N = 0;

4A+ 2M + 2N = 0; 4B + 2N = 20;

We determineA=2,B=6, M=-2, N=-2

20 2546 (2s+2) _ 2(s+1)+4  2s5+2
(s2+25+2)(s24+4) ~ (s+1)2+1  s2+4  (s+1)2+1 s2+4

-1 20 ) _ -t CoN o
L {(52+25+2)(52+4)}—e (2cost + 4sint) — 2 cos 2t — sin 2t

Part (ba): From second shift theorem, we have

-1 20e”TS _ —(t-m) . . _ _ . ot .
L {—(32+25+2)(52+4)}—e (2cos(t —m) + 4sin(t —m)) — 2cos 2(t — ) — sin 2(t — )

cos(t —m)

= e~ "M (—2cost — 4sint) — 2 cos 2t — sin 2t sin(t — m)

Therefore, the solution is



y(t) = e t(cost —4sint) + e t(2cost + 4sint) — 2 cos 2t — sin 2t ifo<t<m
=3e tcost —2cos2t —sin2t ifo<t<m
y(t) = 3e tcost — 2 cos 2t — sin 2t — [e‘(t‘”)(—z cost —4sint) — 2 cos 2t — sin 2¢| ift>m

=e *((3+2e™) cost + 4e"sint) ift>m

Y

2. Electrical Network
Find the currents i1 (t) and i, (t) in the network with L and R measured in terms of the usual units,
v(t) = 100 voltsif 0 < t < 0.5 sec and o thereafter, and i(0) = 0, i’(0) = 0.

Solution:
The model of the network is obtained from Kirchhoff's Voltage Law:

For the lower circuit:



0.8i) + 1(i; — i) + 1.4i; — 100[1 — u(t — 0.5)] = 0
For the upper circuit:

Applying Laplace transform,

1 e—O.SS
0.8sly + (I — I,) + 141, = 100 [; - ]

N
512 + (12 _11) = 0

Solving algebraically for /, and /,:

_ (500 125 625 _ _05s
11_(75 3(s+0.5) 21(s+3.5))(1 € )

_ (500 250 250 _ _05s
I = ( 7s  3(s+0.5) + 21(s+3.5)) (1-e )

The inverse transform foro <t <o.5

. 500 125 _gs5¢ 625 _35;p
b)) ==r—Fe —re

. 500 250 _ 250 _
lz(t)= == e~ 05t 4 — e 35t

The inverse transform for t > 0.5

i (8) = i3 () — iy (£ = 0.5) = == (1 — e025) ™05t — 222 (1 — ¢175)~35¢
i,(t) = i,(t) — i,(t—0.5) = —2?(1 — 025)=05t ¢ %(1 — el75)e™35¢
i 40 1

30

20

10

Exercise



Solve the following ODEs using Laplace transform method:
Y1 =5y1+yzandy; =y, + 5y, +26(t = 1)

Initial conditions: y;(0) = 0; y,(0) = 10

Ans:

y1 = 56t — 5ett + {0~ — e* =Dy (t — 1) and y, = 5e°¢ + 5e*t + {e0(~D — 4Dy (¢ — 1)



Table of Laplace Transform

f@®

F(s)

f® F(s)
1 = af (t) + bg(t) aF (s) + bG(s)
5(t) 1 u(t —a) e_:s
t = 5(t—a) e
" n=123,.. e £t — Qu(t - a) e~%F(s)
at 1
¢ s—a e®f(t) F(s —a)
teat ;2 ar —
e (s—a) dt SF(S) f(O)
t"e™, n=123,.. # % s2F(s) — sf(0) — f'(0)
w n
sin wt 1wl % STF(s) —s™1f(0) — - — fF(1(0)
s t 1
cos wt 1wl fo f(o)dr ;F(s)
e sin wt % tf (t) —iF
(s—a)y+w ds ()
s—a o0
e cos wt m @ f F(s)ds
w
sinh wt T2 f(@®) *g(t) F(s)G(s)
cosh wt u

s2 — 2




